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the first order characteristics of impulsive noise justify
consideration of three systems of densities. These three
systems are: a generalized Gaussian noise, the Johnson S

System, and a mixture model. These are used throughout this
dissertation to provide examples.

In many detection problems it may only be possible to
define a class of probability densities which contains the
actual noise density. In such cases minimax detectors may be
used to guarantee a lower bound on detector performance for the
entire class. The minimax detector is the optimum detector for
the worst case density. It is shown that the worst case density,
in terms of minimizing the asymptotic probability of detecting
a signal, is that density which minimizes Fisher's Information
over the entire class. Several classes of densities are con-
sidered and conditions are established for the minimax detectors.
It is also shown that impulsive noise with a large value for
Fisher's Information provides a better environment for detection
than does a Gaussian noise of equal power. The increased
structure of the impulsive noise may be exploited to increase
detector performance over that possible for Gaussian noise.
Nonlinear processing, however, is required.

An adaptive detector which uses the Johnson System as a
noise model is then presented. After a study of different
measures of tail behavior, a scheme to adapt a detector
utilizing quantiles to measure the tail behavior of the first
order density function of the noise is developed. Simulation
results are presented which indicate that this detector will
perform well over a large variety of background noises. These
simulations also support the statement that non-Gaussian noise,
with large value for Fisher's Information, provides a better
environment for deection than does Gaussian noise.

Suggestions for continuing this research are also
included.
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ABSTRACT

This dissertation addresses the problem of detecting known, discrete-

time signals in additive non-Gaussian noise. The case of statistically

independent samples is emphasized. After a brief introduction to the de-
tection problem, the characteristics and sources of impulsive noise are

discussed. Several models for impulsive noise are then presented. The

complexity of these models and the need for simple density functions to

approximate the first order characteristics of impulsive noise justify

consideration of three systems of densities. These three systems are:

a generalized Gaussian noise, the Johnson S System, and a mixture model.

These are used throughout this dissertation to provide examples.

In many detection problems it may only be possible to define a class

of probability densities which contains the actual noise density. In such

cases minimax detectors may be used to guarantee a lower bound on detector

perfom for the entire class. The mininax detector is the optinumn

detector for the worst case density. It is shown that the worst case

density, in term of minimizing the asymptotic probability of detecting

a signal, is that density which minimizes Fisher's Information over the

entire class. Several classes of densities are considered and conditions

* are established for the minimax detectors. It is also shown that impulsive

noise with a large value for Fisher's Information provides a better

environment for detection than does a Gaussian noise of equal power. The
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increased structure of the impulsive noise may be exploited to increase

detector performance over that possible for Gaussian noise. Non-linear

processing, however, is required.

An adaptive detector which uses the Johnson System as a noise 7."

model is then presented. After a study of different measures of tail -

behavior, a scheme to adapt a detector utilizing quantiles to measure

the tail behavior of the first order density function of the noise is

developed. Simulation results are presented which indicate that this

detector will perform well over a large variety of background noises.

These simulations also support the statemnt that non-Gaussian noise,

with large values for Fisher's Information, provides a better environ-

ment for detection than does Gaussian noise.

Suggestions for continuing this research are also included.
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Chapter I

INTRODUCTION

This dissertation addresses the problem of detecting known,

discrete-time signals in additive non-Gaussian noise. This

* problem may arise in communications, radar, sonar, and other

situations where the dominant noise may be impulsive in nature.

For example, low frequency radio channels are plagued by highly

impulsive lightning strokes [1]. Higher frequencies must contend

with unintentionally generated man-made noise .[23. Among the

sources of impulsive noise on the sonar channel [3) are ice p.

cracking and snapping shrimp. A more detailed presentation of

the sources and characteristics of impulsive noise is given in

Chapter II.

Throughout this dissertation the noise samples will be

considered independent. Although this assumption is not in

general valid [4), it allows nt h order noise density functions

to be expressed as products of first order densities thus greatly

simplifying the detection problem. For many of the results of

this dissertation, the independence assumption can be relaxed

using the weaker condition of strong mixing (see, for example,

Chapter III- Section 1).

9

iL



The detection problem, with which this dissertation is

concerned, is perhaps best expressed as a hypothesis testing

problem:

H: x i  ni e > 0, i-l,...,N(I ) -
K: xi ni + esi

N
H is the hypothesis that the observations {xill consist of

noise only. The alternative K is that in addition to the noise,

a known signal {Qsi )1 is present. The (ni) 1 are theN
realizations of the random variables {N 1  which may be formed

from sampling an underlying cortinuous-time random noise process.

NThroughout this dissertation the (Ni}1 are assumed to be indepen-

Ndent random variables with densities {fi()} where fi C F some

class of symmetric densities. The s. are assumed to have their
1

absolute values upper and lower bounded by positive constants M.

and mI so that 0 << m f sil M 1  .

The optimum detector, in terms of maximizing the probability

of detection while keeping the probability of false alarm below a

certain level, is given by the Neyman-Pearson lemma [5]. This

detector compares the likelihood ratio to some threshold which is

chosen to achieve the desired probability of false alarm.

L(x) fK(X) > T1  decide K (1.2)

< T1  decide H

r
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The fK(x) and fH(x) are the probability density functions for

the observation vector X under K and H respectively. Since the S

noise samples are assumed independent and the signal is known, the

fK(x) and fH(x) can be written as products of the univariate

noise densities:

NfK(-x) R= fi(xi - esi)
(1.3)

N
fH(x) n fi(xi)

The optimum detector can then be written as

N4
E fi(xi - esi) > T 1  decide K

L(x) = 1(1.4)
N
*1n f1 (xi) <T 1  decide Hi=l

In order to simplify the detector, it is common practice to take

the natural logarithm of Eq. (1.4). This yields the

Neyman-Pearson optimum detector:

N fi(xi - esi ) > To  decide KTopt(X) I log .5
i=l fix(i) < To  decide H

Figure 1.1 displays a block diagram for this detector. The

structure is that of a time dependent nonlinearity

ri(xi - esi )
gi(xi) = gopt.(X i ) = log (1.6)

fi(Xi)
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decide K

decide H

Figure 1.1: Detector Structure
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followed by a summer and a threshold comparator. Unfortunately,

this nonlinearity is often difficult to implement.

In small signal cases a simpler detector, the locally 0

optimum detector, is often used. Unlike the Neyman-Pearson

optimum detector, which maximizes the probability of detection

(from here on referred to as the power of the detector) for a

fixed probability of false alarm (referred to as the level), the

locally optimum detector maximizes the slope of the power

function (power versus signal strength) at the origin.

Since the slope of the power function corresponds to the increase

in power as signal strength is increased, the locally optimum

detector's performance should be nearly as good as that of the

optimum detector for small signals.

The locally optimum likelihood ratio [6J is

a6 fg( ) (1.7)
L(x) fH()

Since fK(x) approaches fH(x) as e * 0, L(x) can be written

L(X) = log fK(X) (1.8)

*A
Substituting in (1.3), taking the derivative, and allowing e to
approach zero, yields the standard form for the locally optimum

detector.

N fi'(Xi) > To decide K!
Tloc(X) = N (-Si )  (1.9)

i=l fi(xi) T0  decide H
SAV

Fe. .
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This detector has the same structure displayed in Figure 1.1 with

e

fxi(x=
gi(xi)= glo c i (Xi) = (-si) (1.10)

fi(xi)

The time dependent nonlinearities gopti(,) and gloc,(,) are
11

related [73 by the equation

xiiI 9iopt (xi) L] gl0o. (t)dt (.1

xi 4 -es1

and the fact that gloc() is the linear term in the Taylor

1 expansion of gopti(): *

gopt=i(xi) egloci (Xi) + {higher order terms) (1.12)

For small values of 8, gopt,(,) is often approximated by

6gloci(.)"

In addition to the power function, another useful measure of

detector performance is provided by the concepts of efficacy and

asymptotic relative efficiency [6j. Asymptotic relative

efficiency (abbreviated ARE) is used to compare two detectors

.- based on the asymptotic ratio of the number of samples required

-- by each to achieve the same level and power. That is, if

Snl(a,$,G) is the number of samples required by Detector 1

to achieve level a and power $ with signal strength 6 and

n2 (aia,e) is the corresponding number for Detector 2, then

...

I_



n2(a, s, e)
ARE 1 , 2 = ira (1.13) *8-0 n,(a,8,8)

Thus, if Detector 2 requires (in the limit) twice as many samples

as Detector 1 (n2 = 2n1 ), then ARE1, 2 ' 2 and one could say

Detector I is "twice as efficient" as Detector 2. Often the

linear detector is used as a reference detector for comparing

nonlinear detectors using ARE. ARE is by definition a small

signal (and consequently a large sample size) concept. It can be

shown [6] that the nonlinear detector which has the maximum value

of ARE (using some reference such as the linear detector) is the

locally optimum detector.

Although Eq. (1.13) provides the definition for ARE, the

concept of efficacy provides a much simpler way to calculate it.

If D1 is a threshold detector for the problem expressed by Eq. (1.1)

using the test statistic T(x),

T(x) > , T decide K (1.14)
T decide H

then the efficacy [8) of D1 is given by

aeEK[T(x)31 e-O
E lim E[- (1.15)ED N - NVarH[T(x)J

where EK[T(x)J and VarHCT(x)] are the expectation under K and

the variance under H of the test statistic. The ARE can then be

calculated [8) from

*I
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AREDID ED (1.16) 1
2  ED2

Another definition which will be used frequently is Fisher's
measure of information [5J for the location parameter in a

density. For the problem stated in equation (1.1), Fisher's

Information may be expressed as

I(f) .f (f(x))2 f(x)dx (1.17) 6

-=

A brief outline of the rest of this dissertation will now be ;4!

presented. Chapter II focuses on impulsive noise. First, the

physical sources and properties of man-made and naturally

occurring impulsive noise are discussed. Several models for

impulsive noise are then presented. Well known empirical models

(mathematical constructs designed to fit the data) and physical

models (which are directly related to the underlying physical

mechanisms) are described. Due to the complexity of these models

and the need for simple density functions to approximate the

first order characteristics of impulsive noise, three density

systems are considered. They are: a generalized Gaussian noise,

the Johnson Su System, and a mixture model. Graphs of the

density functions, their optimum and locally optimum non-

linearities, and values for Fisher's Information are given for a

range of values for the parameters of these systems. The chapter

ends with a discussion of techniques which may be used for the

detection of signals in an impulsive environment.
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Frequently in detection problems, the statistical

characteristics of the noise are not well established. In many

cases, mini-max detectors may be used to achieve robustness. S

Chapter III presents results which facilitate the design of these

detectors. First, the asymptotic performance (measured by the 2
level and power of the test) of optimum detectors is related to

the value of Fisher's Information for the underlying noise

distribution. The density with minimum Fisher's Information over

a given class of densities is seen to offer the worst environment O

in which to detect signals. This density, along with its locally

optimum detector, is shown to form a saddlepoint. Several

classes of densities are discussed, and conditions are

established for the mini-max detectors.

Chapter IV presents an adaptive detection scheme. The

Johnson Su system of densities is used as a noise model. 4

Quantiles are used to estimate the tail behavior of the first

order density function of the noise. This estimate, along with

an estimate of the variance, determines the detector's

structure. Simulation results are presented which indicate that

this detector will perform well over a large variety of

background noises.

This dissertation ends with a brief summary and some

suggestions for future research. An attempt has been made to

keep all symbols used consistent throughout the text. Those

symbols which were not presented in this introduction are

presented as needed in the chapters. Chapters II, I1, and IV

are independent and may be read in any order.
4

.4
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Chapter II

IMPULSIVE NOISE: CHARACTERISTICS, SOURCES, AND MODELS

This chapter serves as an introduction to impulsive

noise. Section 1 contains a brief discussion of the

characteristics and sources of impulsive noise. Section 2

presents several of the more common impulsive noise models.

Empirical models designed to fit first order statistical data,

and physical models directly related to the underlying physical

mechanisms, are described. Most of these models are quite

complex and do not lend themselves easily to detection

problems. For this reason, Section 3 presents three density

function systems which can be used to approximate the first

order characteristics of impulsive noise. Section 4 ends the

chapter with a discussion of techniques which may be used for

the detection of signals in an impulsive environment.

Section 1: Characteristics and Sources

99

Impulsive noise can be characterized by a relatively small

number of random, high amplitude bursts. Unlike either thermal

noise or high density shot noise, each of which consists of a 0

large number of sources contributing small disturbances and thus
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satisfies the conditions of the Central Limit Theorem,

impulsive noise typically consists of relatively few bursty 0

sources. The Central Limit Theorem is not applicable, and the

noise is distinctly non-Gaussian. The first order density

functions usually have much heavier tails than that of the

Gaussian distribution. Impulsive noise can rarely, if ever, be

considered white. Samples are not independent. However, due

to the complexities of studying nth order non-Gaussian

distributions, most research has centered on describing the

first order characteristics. The independence assumption is

then necessary to describe high order behavior.

Natural Noise Souces

Impulsive noise sources can be grouped into two

categories: naturally occurring and man-made. Perhaps the

naturally occurring impulsive noise which has captured the most

attention in the literature [1,2,3,4) is atmospheric noise. It

adversely affects communications systems from 1 kHz to 30 MHz.

The total atmospheric noise measured at a given location can
4.

usually be treated as the sum of many individual lightning

discharges modified by the appropriate propagation path. Due

to the fact that at very low frequencies signals can propagate

several thousands of miles, even extremely distant storms can

raise havoc with radio communications. The following

description of lightning discharges is due essentially to Watt

* and Maxwell [I].
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A lightning discharge consists of both a predischarge and

a main discharge. The predischarge consists of a series of

short leader strokes, 30 to 200 feet in length, which attempt

to establish an ionized path from the cloud to the ground.

Each leader stroke is a current pulse of approximately 300

amperes and lasts about one microsecond. A new stroke occurs

every 25 to 100 microseconds. This process forms what is

termed the predischarge or fine structure of the lightning

stroke. It typically lasts about one millisecond. According

to Hall [4], the energy radiated by the predischarge has a 3 dB

bandwidth of about 40 kHz with a maximum at approximately 30

kHz. The spectrum falls off as 1/f.

Once a leader reaches the ground, the main or return stroke

follows the ionized path from the ground to the cloud. It

consists of a 20,000 ampere current pulse and lasts about 100

to 200 microseconds. The return stroke accounts for about 95

percent of the total energy radiated by the lightning

discharge. Often the main discharge is followed by one or more e
additional strokes which follow the same ionized path. The

main discharge radiates power at a much lower frequency than

the predischarge. The center frequency is about 10 kHz and the

upper 3 dB point is approximately 15 kHz [4]. Beyond this, the

spectrum decreases as 1/f 2 .

The majority of the power in VLF (3-30 kHz) and LF (30-300 kHz)

atmospheric noise comes from the powerful return strokes. However,

since the return strokes' power spectra decrease as 1/f 2 ,

predischarges contribute the majority of the atmospheric noise at 0

-- -
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MF (300-3000 kHz) and HF (3-30 MHz). For still higher

*frequencies, atmospheric noise caused by lightning can usually be

* ignored.

Due to the many leader strokes of the predischarge and the

* occurrence of multiple return strokes, the received noise pulses

may not be considered independent. However, neglecting the '

continuously changing effects of weather and propagation paths,

- these clusters of noise pulses may usually be considered

independent of one another. In temperate climates a low

* frequency receiver will detect an average of one stroke every

second [4]- In the tropics the average rate may be as high as

100 per second [4].

The sonar channel is also affected by naturally occurring

* impulsive noise. The major contributor in shallow water is

marine life. Many species can produce underwater sounds which

can mask desired signals [5,6). Among the more important noise

* makers are snapping shrimp and croakers. Snapping shrimp,

usually found in shallow tropical or subtropical water, make a

crackling sound by repeatedly snapping closed their claws.

-Croakers, found predominantly in bays on the east coast of the

United States, produce repeated bursts of tapping sounds. In

areas with a large croaker population, the sound can resemble a

* continuous roar. Porpoise barks and gobbles, sea robin squawks,

and toadfish "boops" may be among other additions to the chorus. A

These bursty sources of short duration sounds can yield a

constantly changing, highly impulsive noise environment.

In polar regions, ice cracking and floe movement are the

major contributors to acoustic impulsive noise. Milne and Ganton



[7] have measured acoustic noise, including amplitude

distributions, under arctic sea ice. When the ice pack is

solid, thermal stresses cause surface cracks which can be heard

by a hydrophone below. At low frequencies (below 1 kHz) the

noise is found to be impulsive. For frequencies above 1 kHz a

more Gaussian noise has been recorded. They hypothesize that

the low frequency noise is caused by medium to large thermal

cracks in the surface ice. Higher frequency noise appears to

be caused by numerous smaller thermal cracks located near -

irregularities on the ice surface. During the summer months

many ice packs break up. Acoustic noise then results from the

motion of the ice and collisions between ice floes. Under all

but a relatively small range of frequencies, the summer ice

noise is found to be non-Gaussian.

Man-made Noise Sources

Middleton [8] divides man-made impulsive noise sources on

the radio channel into two categories: narrowband, for sources

whose noise spectra are narrower than the bandpass of most

receivers, and broadband. Automobile ignition noise, generally

considered to be the most important VHF/UHF noise source in

metropolitan areas [9), can be classified as broadband. It

consists of random, very narrow noise pulses. Neon and

fluorescent lights also contribute broadband noise [8,93. The

random impulses are less intense than those from automobile

ignitions and can usually be considered a local disturbance.

Other broadband impulsive radio noise sources are arc welders,

-_ -° -' ii- l~lmn]IJ mlalI--
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oil burner ignitions and other ignition noises. Narrowband

noise includes emissions from high voltage transmission lines

A 0
and generating stations, electrical motors, and various other

electrical devices. Interference from other communications and

radar systems can also be considered as narrowband impulsive

noise.

The sonar channel is also affected by man-made noise

[5,61. Ships contribute appreciable acoustical noise in

i harbors and shipping lanes. Also, industrial plants along the

*, coastline can be heard for a considerable distance offshore.

Telephone circuits must contend with switching noise. It

• is often modeled as an impulsive process [10,11. The noise is

broadband. Since the impulses usually occur in bursts, errors

in digital transmissions are often bunched together.

* Section 2: Impulsive Noise Models

Impulsive noise models are often grouped into two

categories: empirical models and physical models. Empirical

*0 models are mathematical constructs which attempt to fit

measured statistical data. Little or no attempt is made to

relate the model to the physical mechi.nism of the process.

Physical models, on the other hand, attempt to describe the

entire noise process. Most consider the received noise as a

sum of filtered impulses. Due to the mathematical difficulty
th

,ivolved with studying n order distributions, most research

has concentrated on first order characteristics. The main

S 0
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emphasis in the literature is on the modeling of the

probability distribution of the narrowband noise envelope.

Most work has centered on atmospheric noise.

Empirical Models

In most situations a received noise process, after having

passed through the bandpass filter of the receiver, can be

considered as a narrowband signal O

f(t) =x(t)cosE~wt + 0(t)3 (2.1)

When f(t) is a Gaussian process, samples of the envelope x(t)

are random variables having a Rayleigh distribution. The

Rayleigh distribution is given, in standard form, by

_,

g(x) - x e 202, x>O (2.2)

= 0 ,<O

The mean is 0.5f-r o. The variance equals (2-r/2)02 .

It has been found [12] that the Rayleigh distribution is a

close approximation to the low-amplitude, high-probability

portion of the atmospheric noise envelope distribution. This

is because the low-amplitude portion of the distribution is

caused by the superposition of many overlapping small pulses

which, according to the Central Limit Theorem, tend to behave

S like a Gaussian process. However, atmospheric noise, and
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impulsive noise in general, has far more large amplitude spikes

than predicted by the Rayleigh distribution. For this reason,

the log-normal distribution was proposed [13]. Its density in.0

standard form is

p 1 (log x - )2•plx) = 1 ie T- ,x>0 (2.3)

0 x,<= 0 , x O

The mean is e ' + 02/2 The variance is given by e21 + 0 2 .2

Figure 2.1 displays both the Rayleigh and log-normal

distributions. The parameters are chosen such that both

densities have the same mean (0.5-rz7 1.253) and variance

(2-/2=0.429). The much heavier tail of the log-normal

distribution can be seen in Fig. 2.2, which is an enlargement

of the tail area of Fig. 2.1. Since tail behavior is very

important in impulsive noise modeling, a more accurate method

of display is required.

Impulsive noise data is often plotted on Rayleigh graph

paper. Rayleigh coordinates are chosen such that the Rayleigh

distribution plots as a straight line. For the cummulative

distribution function F(x) - Prob(x < t), one would plot

20log(x/x rms ) on the vertical axis and -log(-ln[l - F(x)]) on

the horizontal axis. Fig. 2.3 displays both the Rayleigh and

log-normal distributions using Rayleigh coordinates. The

heavier tail of the log-normal is now more readily apparent

(left hand side of the graph).

A]
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Fig 2.4 shows atmospheric noise data measured at Boulder,

Colorado [123. The shape of the curve is typical for broadband .0

impulsive noise. Neither the Rayleigh nor the log-normal

distribution provides an acceptable fit over the entire range

of values.

A graphical technique to derive the envelope probability

distribution function for atmospheric noise, given measurements

of three moments, was developed at the National Bureau of

Standards [12J. These three moments: the average noise power,

the average envelope voltage, and the average logarithm of the

envelope voltage, were continuously recorded during the

International Geophysical Year (1958) at sixteen stations

throughout the world. The graphical method was developed to

utilize this information to accurately model atmospheric noise.

Analyzing the data, it was noticed that the atmospheric

noise envelope probability distribution, when plotted using

Rayleigh coordinates, could be approximated by a three section

curve. The low-amplitude, high-probability portion corresponds AL.

to the Rayleigh line. The high-amplitude, low-probability

portion can be approximated by a straight line of somewhat

steeper slope. It can be shown [143 that all functions of the

mform F(x) - 1 - exp(-kx ) (and only these functions) will map

on Rayleigh coordinates as straight lines. This family of

curves, which includes the Rayleigh distribution, is often 9.

called the power-Rayleigh distribution. The middle amplitude

portion of the curve was then approximated by the arc of a

* circle tangent to the two lines. The center of this circle

lies on the bisector of the angle formed by the Rayleigh and

power-Rayleigh lines.

*
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Four parameters are needed to specify this approximation

to the true distribution:
(1) a point on the Rayleigh line

(2) a point on the power-Rayleigh line

(3) the slope of the power-Rayleigh line

and (4) the radius of the circle

Empirical relationships were developed [12] to obtain these

four parameters from the three measured moments. Thus, by

measuring the three moments, a function can be obtained which

is a fairly accurate approximation to the envelope probability

distribution function of the noise. A method was later

developed [15J to obtain the distribution function for any '

bandwidth by, transforming the distribution function obtained

for the bandwidth of the measurements. These graphical

methods, although fairly accurate, were not given any .

theoretical justification. Even more importantly, the

procedures are of limited use in the analytical treatment of

optimum detectors and estimators.

Many other distributions have been suggested to model

impulsive noise (see [8J for a concise list). Most are limited

in application and not entirely successful. None of the

empirical models give a true picture of the entire interference

process.

Physical Models

Most physical models attempt to describe the entire

interference process by modeling the received noise as a sum of

filtered impulses:

p-9
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N
xl(t) = [ Plai; t-t i )  (2.4)

The (ai}N are random variables which describe the pulse

amplitudes, p(.) describes the pulse shape, and the random

variables {ti)N are the occurrence times. Different

assumptions for these variables can lead to quite different

models.

Furutsu and Ishida [16J were interested in modeling the HF

radio noise which is predominantly caused by the fine structure

of the lightning discharge. They viewed each predischarge as a

noise packet. They assumed Poisson occurrence times for these 6

packets. Within each packet they modeled the fine structure as

another independent Poisson process. This model, consisting of

Poisson noise packets occurring in a Poisson manner, is often

called Poisson-Poisson noise.

In order to study the narrowband noise envelope, Furutsu

and Ishida assume the following filtered impulse model:

N N'
X = r(t, ti , t'ij, aij)cos[w(t-t'ij)-4ij] (2.5)

i=1 j=l :A

where t = the time of observation
th

t - time of occurrence of i pulse packet
1

.th th
t -- time of occurrence of the j pulse within the 1

packet

w - receiver center frequency

4 Oij - phase of the jth pulse within the ith packet --



-26-

They assume the phase is uniformly distributed over (0,2r).

The packet occurrence times are assumed to be uniformly
"

distributed over the interval of observation (0,T) and the

random pulses are assumed uniformly distributed over the length

of each packet. The probability that N' pulses occur in time

(O,t), within a packet, is given by

N' -v'tN t
Pti(Nt) e (2.6)I

The probability that N packets occur in (0,T) is given by

N -vT

PT(N) - (vT) e (2.7)
N!

For clarity, let T = t - ti = the length of time from the

thstart of the i packet to the time of the observation, a = a,.

and t' = t'.. Now assume

-8Ux-t' ) -st' -

r(tti.t'ijaij) r(r.t',a) ae e (2.8)

Here e- t $ is the receiver impulse response and ae
-B (T- t ')

is the amplitude of the impulse within the packet. Note that,

although 'a' is a random variable, the impulses will tend to be

larger at the start of a packet and then will tend to decrease

in magnitude. Also, 'a' is assumed distributed according to

w(a), some function which is chosen considering the spatial

distribution and strength of the impulse sources.

-S.9
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Using the above assumptions, Furutsu and Ishida calculated

the first order density function for the noise envelope. Their

results are

f(E) = EX Jo[EXJ ,(X) dX (2.9)

Here J 0[* is the zero order Bessel function ( s kind)

and 4(X) is the characteristic function,

T
4(X) = exp { v T [*'(X) _ 1) dt } (2.10)

where,

= exp { v w(a) (Jo[Xr(t,t',a)3 -1) da dt'} (2.11)

Upon substitution of r(t,t',a) and w(a) the integrals become

quite intractable. Simplifying assumptions lead to solutions

for special cases. These solutions have shown fairly good

agreement with measurements. However, since the density

functions cannot be put in closed form in general, this model

is of only limited use in the analytical treatment of detection

and estimation problems.

Beckmann [143 proposed a different model for atmospheric

noise. He assumed individual atmospherics could be represented

by pulses, whose envelopes could be written as

"-9.
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-(t-tk)/a
Uk = Ek e , t>tk (2.12) 0

(t-tk)/b
Ek e , t<t k

The rate of decay for the spikes was assumed to be much slower 0

than the rate of upsurge (b<<a). For convenience, define

c = (a+b)/2, the average time constant. Beckmann chose the

peak amplitude Ek to be log-normally distributed. He O

justified this as follows. Divide the propagation path for a

given atmospheric into a large number of sections. Assume the

attenuation for each section is independent of the rest and

that no one section's attenuation will dominate. Then the

total attenuation (expressed in dB) will be normally

distributed (mean ., variance a2). Since the log of the

peak amplitude (Ek) is proportional to the total attenuation,

the peak amplitude is log-normally distributed.

Using Poisson occurance times (with v = the mean number

of pulses per unit time) and considering the phase to be

uniformly distributed, the values for all the pulses, both

rising and decaying, are summed. In the low density case

(vc<<l), the nearest pulse will dominate the othtrs. The

rest can be approximated by a single pulse with a Rayleigh

envelope. Thus the received noise can be modeled as the sum of

a pulse with a log-normally distributed envelope and a pulse

with a Rayleigh envelope. Beckmann calculates the distribution

function of the total noise envelope as

, - --I ... ...... .. .
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fCE) = 2E I I 1 exp[_(ln y - u) 2 E 2 + Y 2] 1 (2YE) dy (2.13) •
y2c M o M

22 2(2+ )

where M = v c e in(l/vc) is approximately equal

to the noise power and 10 () is the 0th order modified Bessel

function. This distribution is nearly Rayleigh for small E and

nearly log-normal for large values of E. The four parameters of

the density v, c, a and p can be directly related to the

properties of the noise. Both v, the mean number of discharges

per unit time, and c, the average time constant, depend only on

the properties of the discharges. The parameter a, the

standard deviation of the total attenuation of the pulses, and

K, the mean value of the total attenuation, are determined

almost entirely by the properties of the propagation path. Also,

when plotted on Rayleigh coordinates, vc determines the

position of the Rayleigh line (low-amplitude, high-probability

line), c determines the log-normal curve (high-amplitude,

low-probability), and v, c, a and p together determine the

rms value. Thus, knowing these four parameters, a density can be

sketched by connecting these two functions with a circular arc as

was done by Crichlow, et al. [12).

Although Beckmann's model is closely related to the

statistical parameters of the noise process, the integral of

0 Eq. (2.13) is rather cumbersome. A general solution can only

be found for very small or very large envelope levels. Hence,

Beckmann provides a theoretical justification for the use of

0 the log-normal distribution for strong atmospherics, but he

9 . .,- - Im I I D m W a w , . . . .. . . . . . . .
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doesn't provide a density function which can represent the

noise over the entire range of interest. Giordano [173 %nd

Middleton [8,18,19,203 have both developed filtered impulse

models which are much more widely applicable. Giordano's model

is similar to those previously described and will not be

treated further. Middleton's model is a more complete and a 0

more general model than those presented above.

Middleton represents the received noise process as

y(t) = x(t) + n(t) (2.14)

where x(t) is the impulsive component and n(t) is a Gaussian O4

background (variance OG2). He assumes

x(t) = [ uj(te) (2.15)
J

where Uj(t,8) is the waveform emitted by the jth source after

having passed though the receiver. All received noise pulses are

assumed to have the same basic waveform with random variations

in scale and structure represented by the random parameter .

Middleton assumes the sources emit independently in time :0,

according to a Poisson distribution with mean rate v. He

denotes the mean duration of a pulse by T. The source locations

are assumed Poisson distributed in a space A with coordinates X.

Middleton uses characteristic functions to derive the

density function for the noise. He considers two cases:

narrowband (noise whose spectra are narrower than the passband

of the receiver) and broadband (noise with spectra comparable to

6 ~.0
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or wider than the passband of the receiver). Note, however,

that both cases produce narrowband noise in the receiver. That

is, in both cases the noise can be modeled by its envelope and 0

phase. For both the narrowband and broadband cases, the

characteristic function for x(t) can be written,

*x(u) = exp[E{A Jo(Bu) - A}j (2.16)

0th ore eslfnto st
where Jo () is the 0 order Bessel function (1 kind),

B = B(t,X,.a) is the envelope of U(t,_) (which can be

directly related to the physics of the noise generation and

propagation), and A = vT is the first basic parameter of the

model. The parameter "A" is termed the "Impulsive Index." It

measures the amount that the noise pulses overlap in time. For

high levels of overlap (large A), the density will approach the

Gaussian distribution. When the amount of overlap is small

(small A), the resulting noise will be highly impulsive.

For narrowband noise, several approximations can be made in

Eq.(2.16). The resulting characteristic function for x(t) is

Sm -.R E{B 2 )U2
i x(u) e-A  A- e4  (2.17) 3~m=0 m:

The characteristic function for y(t) is then

*2 U

4Iu) = •x(u) e u (2.18)

CID m E{B21U 2 -lCG 2U2
* = e-A A BGU

m=O -

LO - I -I I i i I I I I I I ih . . . . . . . . . .
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This function can now be inverted. Letting z be the normalized

noise (z = Y/Yrms ) , Middleton finds for the probability

density function of the instantaneous amplitude in the

narrowband case:

f(z) e-A  A e (2.19)
m=0 M, V2 Tame

where

e2 = m/A + P (2.20)
1 + P

and "P" is the ratio of the power in the Gaussian background to

that in the impulsive component

2

P (2.21)
1/2[A E{B 21J

It is the second basic parameter for the narrowband model.

Note that Eq. (2.19) is just a weighted sum of Gaussian

distributions with increasing variance cm For the

*Q envelope of the received noise, the model yields

* Prob [E>EO  e -A  A. e Cm (2.22)m=0 m.

* which is just a weighted sum of Rayleigh distributions.

6 - °•' - n n mm mn 'a' " m'm~ ,' ,'" " .. . .. .. . ..
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In the broadband case the simplifying assumptions for

Eq. (2.16) can no longer be used. The procedure becomes more

difficult but is still tractable. One complication is that the

resulting density has infinite variance for certain ranges of

the parameters. Thus, to normalize the noise, the power in the

Gaussian background alone is used: z = y/nrm s. The density

can be written

-Aa D m m

f(z) e e (-1) r(m l) IF 1 (-ma, 1, z2 ) (2.23)
m=0 m. ,

where IFI(.,,) is the confluent hypergeometric function [21],

r(o) is the gamma function and a, A are the two basic

parameters for the model. They are both related to the source

distributions and propagation laws for the noise. The envelope

in the broadband case is

-E0 2  c m m
Prob[E>EO ] - e [l - Eo2  (-i) A, r(l + _-). (2.24)

m=l m: 2

IF1( 1 - 21, 2, Eo 2 )]
2

Middleton has presented evidence that Eqs. (2.22) and (2.24)

are accurate representations for the envelope of impulsive

noise. Figs. 2.5, 2.6, 2.7, and 2.8 are taken from [8].

Fig. 2.5 shows a comparison between Middleton's narrowband

-3model (A=0.35, P= 0.5x10 ) and actual narrowband impulsive

noise data. Fig. 2.6 is a similar display (A=10 - 4 , P=50) for

narrowband electromagnetic noise from ore crushing machinery.

6
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In both cases agreement between the model and data is quite

good. Figs. 2.7 and 2.8 compare Middleton's broadband model

with measured impulsive noise data. Fig. 2.7 shows broadband

man-made noise (primarily automobile ignition noise) and

Fig. 2.8 displays atmospheric noise. Again close agreement

between the model and measurements are found.

The most important aspect of the Middleton model which

sets it apart from the rest is that the parameters for this

model (A and P or a and A ) can be determined explicitly

from physical considerations. The model can be tested by the

data rather than just fit to the data. The chief problem with

this model is the assumption of independent noise pulses. This 4.

often is not valid. Unfortunately, as with the other models,

the equations are intractable without this assumption.

Another physical model was proposed by Hall [4]. Although

not as comprehensive as the Middleton model, it deserves

attention because it is not of the filtered impulse type. Hall

was interested in modeling VLF atmospheric noise. In order to

achieve a large dynamic range, he proposed a model which

considered the received noise process to be of the form

y(t) - a(t)n(t) (2.25)

where a(t) is a slowly varying stationary random process and

n(t) is an independent, narrowband Gaussian process. Hall

selected a first order distribution for a(t) which was

analytically tractable and which yielded good agreement with

measured atmospheric noise data. His distribution for a(t) is:

i .. ... i l IN I~lI~ i i nlali m~m' . --- 9 -
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A

m/2"m

fa(a )  (M/2) 1 e - (2.26)
fmr(m/2) la lm~l

where m and a are two parameters to be chosen. Using the

first order distribution for the Gaussian process,

fn(n ) = 27 e (2.27)

he calculated the first order probability density function for

y(t) as

r( ) y - 1

fy(Y) = 2/2 (2.28)
( r (- -) p' (y 2 4 ey 2

where y = m -

e =M+ 1

For the special case 01 = a, Eq. (2.28) reduces to the

density for Student's "t". Hence, Hall named Eq. (2.28) the

generalized "t" distribution.

As a check on his model, Hall calculated the first order

distribution function for the envelope and phase of y(t). He

obtained

e-+1f E(E) =(e-1) y-1E + (2.29)

(E2 + y2)-T-
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and a uniform phase. For e in the range 2<e84, Eq. (2.29)

agrees well with VLF atmospheric noise data. The value 8=3

is best; however, the density function [Eq. (2.28)3 has

infinite variance for 6=3 and thus can not represent a real
0

process.

Although Hall's model is simple enough to use in detection

problems and is fairly accurate, it does not have a strong

physical basis. The parameters 8 and y have no real physical

meaning and must be selected to fit statistical data rather

than physical conditions.

Section 3: Tractable First Order Non-Gaussian Noise Models

Although the models described in Section 2 are very

detailed and many are quite accurate, they are all quite

complicated. Most cannot be used in analytical treatments of

detection problems. Those which can are cumbersome. There is

a need for simple, first order families of densities which can

be used to describe the first order statistics of non-Gaussian

noise. Three possibilities are: a generalized Gaussian noise,

the Johnson Su System, and mixture models. These three

*0 systems are used throughout this dissertation to provide

examples.
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A Generalized Gaussian Noise

A generalized Gaussian noise [22], which provides a system

of density functions whose tails can be made heavier or lighter

than that of the Gaussian distribution, is given by
0

c
-Er(ac) 1xI]

f(x) cn(ac) e ,c>O (2.30)
2r(l/c)

where
1/2

(o,c) = [ (3/c)]
'0 a [r( 1c)J

The case c=2 is the familiar Gaussian distribution and c=l yields

the Laplace or double exponential distribution. The density too

functions are plotted in Fig. 2.9 for values of c in the region

of most interest, c=0.5 to c=3.

The locally optimum nonlinearities for detecting a constant

signal in this noise are given by

(x) c[r(a,c)]c lxic-l sgn(x) ,c>0 (2.31) .*.

They smoothly cover the transitions from a blanker, whose tail

region decreases as l/x, through the sign and linear detectors,* -

to an expander. The locally optimum detectors corresponding to

the densities of Fig. 2.9 are given in Fig. 2.10. The c=2 case

L i~w0
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.1

is of course the linear detector and c-1 gives the hard limiter

or sign detector. The Neyman-Pearson optimum nonlinearities

for the constant signal case are

g t(x)= E (a,c)Jc (IxIc - Ix-61 c ) ,c>O (2.32)

These are plotted in Fig. 2.11 for the signal strength e=a/2.

Fisher's Information can be calculated by substituting

Eq. (2.30) into Eq. (1.17). After integrating [see Appendix

2.1] one obtains,

c2  r(3) ( -)o
c C

I(f) = ,c>1/2 (2.33)
02 r(I)3 2

c

CO Ozc,<1/2

This function is plotted in Fig 2.12. Since the Gaussian

distribution minimizes Fisher's Information over all fixed

variance distributions, the curve has a minimum at c-2. The

peaked origin of the density function accounts for the greater

information for location for c<2, and the greatly diminished

tails account for the case c>2.

The Johnson Su System

The Johnson S System [231 can be used to provide a
u

system of heavy-tailed symmetric distributions. It is formed

*" by a memoryless transformation of the Gaussian distribution,

0

S . . i ia i , . . . . ... . . ...
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X = a + X sinh (  ) (2.34)

The resulting density functions can be written

f(x) + 12 6-1/2 -1/2{y + 6sinh- (2.35)

The parameters a and y, which affect location and symmetry S

are set equal to zero. The parameters 6 and X affect the

shape and scale of the densities. The choice of

1/2
2=2 (2.36)

e2/62 -

yields densities of common variance c2. Thus the densities

can be specified by the two parameters o2 and 6. A few

densities from the Johnson System are plotted in Fig. 2.13.

Small values of 6 correspond to heavy-tailed distributions.

In the limit as 6 * =, the densities approach the Gaussian

distribution.-I

The locally optimum nonlinearities for the detection of

constant signals are given by

= [ + ]+ I sinh-I1  (2.37)
gloc(X i xx2 x 2 3

>2 (7)

-,
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Fig. 2.14 -Johnson's S uSystem: Locally Optimum Nonlinearities
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The nonlinearities corresponding to the densities of Fig. 2.13

are given in Fig. 2.14. All locally optimum nonlinearities in

this system are noise blankers since lim gloc(x) a 0 for allX

6 [see Appendix 2.2). The Johnson S System is an

especially useful noise model since its distributions appear

Gaussian in the middle but have heavier tails. That is, the

locally optimum nonlinearities are nearly linear about the

origin, but all become noise blankers eventually. The S

Neyman-Pearson optimum nonlinearities for e-a/2 are plotted

in Fig. 2.15.

A graph of Fisher's Information versus thp parameter 6

is given in Fig. 2.16. Small 'alues of 6, corresponding to

heavy-tailed distributions with large peaks at the origin, have

relatively high values for Fisher's Information. As 6

increases 0 21(f) rapidly approaches one, the value for the

Gaussian distribution.

Mixture Models

Mixtures have been frequently used in data analysis to

either add uncertainty to statistical assumptions or to account ..

for gross errors [24,25,26,27]. They have also been used in

detection problems to test the robustness of standard detectors

and to aid in the design of more robust detectors [28,29,30. _9

The basic mixture density is

f(x) (I- c)fl(x) + Ef2 (x) 0 < E <3 (2.38)

Io
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The density f1 (x) is the nominal density and is very often

chosen to be the Gaussian density. The density f2 (x) is the

contaminant. It is selected to fit the particular application.

Huber [26] allows f2(x) to be a member of the class of all

distributions in his work on robust estimation. Others [24,25)

have selected f2 (x) to be Gaussian with a variance much

larger (variance ratios between 2 and 100 have been used) than

that of f (x). The percent of contamination c is usually
I0

chosen to be small (often less than 0.1).

Figs. 2.17-2.24 display the densities, detector

nonlinearities, and Fisher's Information for a mixture of two

Gaussian distributions. For fW(x), the Gaussian density with

variance = l/(l-£+cy2 ) is used. The Gaussian density with

variance c2
2 YaOl is used for f2(x). Thus, the ratio is

2 2C2,/o 1= y and the overall variance is unity since

o=(i-E)o1 2+o2 2=1 Figs. 2.17, 2.19, and 2.21 display the

densities, the locally optimum nonlinearities and the optimum

nonlinearities for the Gaussian-Gaussian mixture with y2_100

and various values for E. Figs. 2.18, 2.20, and 2.22 are

similar graphs for c=0.1 and various y2 values. Note that

"* the high-probability, low-amplitude portion of the

nonlinearities is linear. This region is primarily determined

by the nominal density, which is Gaussian. The low-

• probability, high-amplitude portion is also linear, but with a

different slope. This region is primarily determined by the

contaminating density. There is also a nonlinear transition

* region which connects these lines. Figs. 2.23 and 2.24 display :0

Fisher's Information versus E for y2 a 100 and Fisher's

--.
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Fig. 2.17 -Gaussian-Gaussian Mixture: Density Functions
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2Information versus y for E = 0.1. These are not straight

lines. However, over the range of most interest, the

relationships are nearly linear. S

Section 4: The Detection Problem in an Impulsive Environment "0

The detection problem introduced in Chapter I [Eq. (1.1)]

i can be solved if the statistical characteristics of the noise

are known. The optimum detector is given by Eq. (1.5) and the

locally optimum detector is given by Eq. (1.9). Both of these

detectors consist of a nonlinearity followed by a summer and a

threshold comparator, as shown in Fig. 1.1. The difficulty of

course is that the density function for the noise is not

perfectly known. Equations have been formulated (see Chapter

I - Sections 2 and 3) to model noise; however, it must be

remembered that these are only approximations to the true

densities. The optimum detectors for these models will not

necessarily be optimum for the actual noise. Worse yet, the

noise is often non-stationary. The optimum detector would then

have to change to reflect the changes in the noise statistics.

Since optimum nonlinearities are difficult, if not

impossible, to design for actual noise, several authors

[29,31,32,333 have studied the performance of different

suboptimum nonlinearities. Bernstein [31] calculated the

locally optimum nonlinearity for a set of VLF atmospheric noise

data. He reported that the nonlinearity was roughly linear

near the origin and that it suppressed high amplitude

L - - - - - - -
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observations. Both limiters and blankers can be used as

approximations to this type of nonlinearity. Fig. 2.25

displays simple limiter and blanker nonlinearities. The

performance of limiters and blankers for various noise models

has been studied [29,31,32,333. The noise blanker (or hole

puncher) performs well for a wide variety of densities;

however, its performance is very sensitive to the selection of

the noise blanking level. The limiter (or clipper), although

not quite as effective as the blanker, is less sensitive to the 0

selection of its limiting level. Other more complex

approximations to the optimum nonlinearities may be used [29].

The better the approximation, the better will be the ,4.

performance. However, the disadvantages of using a complex

nonlinearity in the receiver may outweigh the increased

performance.

Another approach to the problem of detecting signals when

the statistics of the noise are not well known is through the

techniques of robust detection. Often the noise can be

considered to belong to a well defined class of noises. One

then must look for a detector which has reasonably good

performance over the entire class. Several authors

[30,34,35,36] have considered different classes of mixture

models. In many cases mini-max detectors have been established

for the class. Some results which facilitate the design of

mini-max detectors are presented in Chapter III of this

dissertation.

If very little information is available on the statistical

characteristics of the noise, it is often wise to use
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nonparametric detection techniques. There are many good

references on nonparametric detection [37,38,39,403. These

techniques will not be treated further in this dissertation.

For applications where the noise statistics are unknown or

time-varying and near optimum detector performance is

essential, an adaptive detector may be necessary. Although O

more complex than those detectors mentioned above, when

properly designed, it can be nearly optimum for a wide variety

of noise environments [41,42,433. Chapter IV presents an o

adaptive detection scheme which performs well for several

different noise densities.

_o.

J ml glmm ~mi-J 3
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Appendix 2.1

Fisher's Information for the Generalized Gaussian
Distribution of Chapter II - Section 3

Starting with Eq. (1.17)and substituting Eqs. (2.30) and

(2.31), we have

I(f) f(-x) f(x)dx

C

(cr, c x c -1 .,n(%) )2 c e-[nix1] dx, c > 0

2r (l)

where n [ c r- . /

This can be simplifLed to

c3rn2c+1 2c-2 -nCxc
I1(f) = X e dx, c > 0

Let t - CxC and obtain

I(f) t c et dt, C>O
r (F1l

O For c > 1/2, the integral equals r(2-1) and thus

2 2 2r(3)r(2--)
1(f) c n r(2- 1 ) c c > 1/2

I
F
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ForO0< c~ 1/2, let a 2-1. ThenO0< c~ 1/2 a D and

1f e J dt

However,

f OL1 -t fa-l t
t e dt 1 t e dt A

e- r t dt

and Jt al dt = for a 0.

Thus 1(f) = for 0 < c 1/2. This establishes Eq. (2.33).

to
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Appendix 2.2 --

0
A Proof that lim gloc(x) - 0 for Johnson's S System

X U

One can write

~10~(x 2 31 ~) ++ ]k sinh (7)

x 62 sinh (x/)
2+2 X [1 + x2/x2]1/ 2

Then,

lim gloc(x) = 62 sih (x/)
X" X I + x2/X2]1/

2

lira 0

X-*CD
-- _=

by L'Hopital's rule.

4

-
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Chapter 11ll9

MINIMAX DETECTORS

In many detection problems the statistical characteriza-

tion of the noise is not complete. For example, it may only be

possible to define a class of probability densities which

contains the actual noise density. In such cases minimax

detectors may be used to guarantee lower bound on detector 0

performance for the entire class.

Once A class of densities has been specified, the worst

case density within the class must be identified. The best

detector for this density is the minimax detector for the

class. Sections 1, 2, and 3 of this chapter establish the pair

(f 0 D 0 ) as the saddlepoint of this detection problem. The

density f is the member of the class with minimum Fisher's0

Information. The detector D is the locally optimum detector
0

for density fo. In Section 4 a few classes of densities are k

considered and relationships are established to determine the

minimax detector.

* 10

4P!
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Section 1: The Relationship Between Fisher's Information and

the Asymptotic Performance of Optimum Detectors

Fisher's Information has been associated with the

*asymptotic performance of estimators and detectors before.

Capon El has related it to the efficacy of the locally optimum

*' detector (see Appendix 3.1). Ingram [2] related Fisher's

Information to the improvement (measured as an increase in the

signal-to-noise ratio) obtained with using the locally optimum

detector rather than the linear detector. Huber [3] related

Fisher's Information to the asymptotic variance of estimators

in his work on robust estimation. He concluded that the most -0

* robust M-estimate over a given class of densities is the

maximum likelihood estimate for the density which minimizes

Fis:,er's Information. El-Sawy and VandeLinde [43 applied

Huber's results to detection problems. Their M-detectors

utilize Huber's M-estimates to form the test statistic.

The results presented here are different. Fisher's

Information is related directly to the asymptotic probability

of detection for both optimum and locally optimum detectors.

It forms part of a generalized signal-to-noise power ratio and

can be thought of as a measure of the difficulty of detecting a

signal in a given noise.

4d Consider the problem which was first presented in Eq. (1.1),

H: xi = ni

K: x i = ni + Osi

. . . ... ..4" - m m m d b ' - '-



As before, the known signals {es iM obey 0 < m < Isil < M <

NThe noise samples {n. ) are realizations of the independent randomS1N
variables {Ni} 1 with densites fi c F, a class of symmetric

11

densites which will be defined below. The Neyman-Pearson

optimum detector is given by Eq. (1.5) and the locally optimum

detector is given by Eq. (1.9).

The performance of these detectors is usually measured by

the power function 8(8) = ProbK(decide K), and by the level

a = Prob H(decide K). For a fixed level a, the Neyman-Pearson OHI
optimum detector maximizes the power function 8(e), while the

locally optimum detector maximizes the slope of the power function

near the origin d-0 ) The level a is fixed by the

appropriate choice of the threshold T. In order to calculate the

power function, the probability distribution function of the test

statistic [Topt (x) of Eq. (1.5) or T loc() of Eq. (1.9)] is

required under both H and K. This is difficult to obtain in

general since an N-fold convolution of the densities fi}N

is required. However, a few special cases have been solved. The

performance of the linear detector in Gaussian noise is well known

and the amplifier-limiter operating in Laplace noise has also been

studied recently [53.0
In detecting a small signal using a large number of

observations, it is usually possible to use the Central Limit

Theorem to show that the test statistic is asympotically normally 9
distributed. One simple form of the Central Limit Theorem [63

states

* 9P
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Let t .... ,tN be a series of independent random

variables having arbitrary distributions, means

and variances 21,... 22

respectively. Let
N N
Z t. - -

Yn= /N 2)1/ 2  ,n=,...,N S

If 02 i < m for all i and if there exists positive constants

m and M such that 2. > m and E{Iti-Ii3} M for

all i, then the distribution of yn approaches in the limit the

unit normal distribution. (In the special case where the
N2

{t i) are identically di.tributed, the condition 2  <

for all i is sufficient.)

Using this theorem, it is straightforward to show that

N
T - E i

iK
N2 1 - (3.2)

and

N
T- Z iH

a - i=1
1(3.3)

~ iH

provided that the conditions on pi and c2i are met under

both H and K. These three conditions are used to define the

class of densities F for which the results of this section

hold. The symbol * signifies equality in the limit as N

approaches infinity and e approaches zero. The symbol €()

represents the unit normal cumulative distribution function.

-- - ----
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Also, PiK EK[gi(xi)] and 0 2 = VarKgi(xi)I. Similarly,

and a 2 iH are the corresponding means and variances

under H. For the Neyman-Pearson optimum detector gi(xi) = gopti(xi)
and for the locally optimum detector gi(xi) = gloc (xi ) [as defined

by Eqs. (1.6) and (1.10)]. •

First consider the Neyman-Pearson optimum detector

N fi(x-si) > T decide K
Topt(x ) = Elog 1  (3.4)opt f i(X i) < T decide H

Assume that the fi have infinite support with derivatives of all 4,
1

order on (-w,o) and that f(=) = fi (=) = f.'(-=) = 0

for all i. In order to calculate the power function using the

Gaussian approximation provided by the Central Limit Theorem,

the mean and variance of the single sample test statistic must

be calculated.

11 - oE = log 1 1 1 (3.5)
i~ f i (X i

Expanding in a Taylor series about 8=0 yields

2iH = 2 2I(f + 0 4 K(,silfi) (3.6)

where
*e S

f 00 f. '(X)
(f.) fi) dx (3.7)J fi(x)

is Fisher's measure of information for the location parameter in
the density fi(s), and K (8, si,f i ) is a power series

containing the remaining terms of the expansion. Similarly,
S .e
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1-e _ _ _ _ _ 2

• 2 [lo f i(xi- i]2 l

aiH EH log f- iHf fi (X)

(3.8) 0

= 2 si2I(f) + e4K2 (esi1fi)

where K2 (8,siff) contains the remaining terms of the

series. Since f.(.) is assumed symmetric, it can be shown 0

[73 that PiK = -)1 iH and a2iK= C2 iH Using the

Gaussian approximation, the threshold is chosen to fix a:

N

a ProbH [Topt(x) > 1-N2 (3.9)

-1 2\1/2 N
T ) (1-a)irla H  + i 'iH (3.10)

(i==1

The symbol z denotes approximate equality. The power function

is then calculated:

N

SO) ProbK[Topt(x) > T] 1/2 (3.11)

N
2 Z "iH .

0(8 (11a) + (3.12)

N*H)/
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In the limit as e-0 and N-- with k e2 E 2 f anozr

constant, the power function becomes
0

provided pill and a 2ill are bounded.

The performance for the locally optimum detector is

calculated similarly.

Tic) N -f 1 '(X1 ) >T decide K (3.14)
1=1 f1 (x1 ) <T decide Hto

The mean and variance of the single sample test statistic under

h are

p~ill Eli ( f~(~0 (3.15) jo
f (xi)

illH EH f(X 1 ) Si =S 1
2I ( (3.16)

The mean under K is

Pi EK (fi() s) = -siL :X fi(xi-6si)dxi (3.17)

f0X)ICfi(i
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Expanding in a Taylor series about e =0 and simplifying yields

- 2 3
IiK esi I~i + e J1 (6,s.,f .) (3.18)

where J i(O,sifi) represents the remaining terms in the

series. The variance under K may be treated similarly

I ( fi'(xi) 2 20
0IK = K 5i -k f1 (xi) /

(3.19)
2 2

1 ~CiK = i If)+ J2(e,si,fi)

Using the Gaussian approximation,

N

ProbT Z[~::) 2 (3.20)9

Ta ~ (1-a Toc) > Ti 1] (3.21)

N

T ()=Po~T () r 8] 1 -~ (3.22)

4N

T i
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Substituting the appropriate expressions gives

)(1-a) - k - _ N ]
s(e) N 1/2 (3.23)

1 + Z J 2 (e'si1f -
k i=l -1J

where k2 = 62 s I(fi) In the limit as eO and N--

holding k constant, the power function is

iI

8(8) = . - 40-(1-a) - k) (3.24)

2

provided .iK and aiK are bounded. Note that this equation

e for the asymptotic power function for the locally optimum

detector is the same as the equation for the optimum detector

[Eq. (3.13)]. This is not surprising since the Neyman-Pearson

optimum detector approaches the normalized locally optimum

detector as N-- and 6-0.

The expression [Eq. (3.13) or (3.24)) for the asymptotic

power of optimum and locally optimum detectors holds for all

fi c F, where F is a class of symmetric densities with the

following properties:

(1) f. has infinite support with derivatives of all order
1

on

(2) f =)  f = fl (w) = fi (-a) = 0

(3) There exists positive constants m2 an, M2 such that

(a) 0 < m2 < I(f) < C

and

" (b) f :X fi(x) dx < M 2 <

* ix
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Condition (3) is required to satisfy sufficient conditions for

the Central Limit Theorem (Appendix 3.2). In the special case 0

Nwhere si = 1 for all i and the (Nil1 are identically distributed,

that is fi = f for all i, Condition (3) may be replaced by the

weaker condition:

(3m) I(f) <

The power function [Eq. (3.13) or equivalently Eq. (3.24)]

is plotted in Fig. 3.1 for various values of a, the 0

probability of false alarm. Note that k2 = e2 s 2 I(fi) isi=l
basically a signal-to-noise power ratio since

N 2
2S = signal power parameter

i1l

and

I(f i ) = noise power parameter

N 2 N
For the special case when [ s /N = 1 and the {ni1 have

i=l 2 2common density f, one obtains k = e2NI(f). Thus, the .0

larger Fisher's Information is, the larger the generalized

signal-to-noise ratio (k 2 ) will be, and the larger the proba-

bility of detection will become.

To illustrate the relationships between optimum detector

structure, optimum detector performance, and Fisher's

Information for the special case of si = 1 and fi - f for .,_

all i, two systems of densities will now be considered: a

F | " - ... i| lll~ l l lnml l l l i i ---'.--- -- 0



.4 -83-

ill N

tnS

I q S
u

4ww

C; C

Jamo0



-84-

generalized Gaussian noise and the Johnson S System (see

Chapter II - Section 3 for a description of these density

systems, graphs of their densities and detectors, and plots of -

Fisher's Information vs. the system parameters).

The power curves for optimum detectors operating in

generalized Gaussian noise for several values of the parameter c

are given in Fig. 3.2. The power function formula calculated

above only holds for c > 1/2. For c < 1/2 the sufficient

conditions on the Central Limit Theorem are not satisfied

[Condition (3') is violated]. The curves for small values of c,

corresponding to large values for Fisher's Information (Fig. 2.12)

are higher than those for values of c near 2. The c - 1 curve

is the power function for the sign detector operating in Laplace

noise. The c = 2 curve is for the linear detector in Gaussian

noise. This set of curves illustrates the fact that it is

easier to detect a signal in additive noise which has a large

value for Fisher's Information than it is to detect a signal in

noise with smaller values for Fisher's Information. One could

consider Gaussian noise to be the most difficult noise

environment in which to detect signals since Gaussian noise has

minimum Fisher's Information among all fixed variance

distributions and thus has a maximum value for the noise power

parameter among all densities of a given r.m.s. noise power.

Fig. 3.3 displays the power curves for optimum detectors
*AD

operating in noise from the Johnson Su System. Small values

of 6, corresponding to large values for Fisher's Information

(Fig. 2.16), yield higher curves than large values of 6. As

6 increases, the curves rapidly approach the power curve for

the linear detector in Gaussian noise.

S 9
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All three of these graphs serve to illustrate the fact that

Fisher's Information can be used as a measure of the difficulty

of detecting an additive signal in noise. Non-Gaussian noise,

2with large values for Fisher's Information, increases k thus

providing higher power at a given level than is possible for the

Gaussian distribution. Impulsive noise, with its characteristic 0

heavy tails, has a high value for Fisher's Information. The

optimum detector for this noise will perform far better than the

linear detector would in Gaussian noise. This is reasonable •

since limiters or blankers can be used to suppress the heavy

tails which in effect will decrease the noise power without

decreasing the signal power. hence, the increased structure of !0.

non-Gaussian noise, if properly considered, can be a great

asset. Simulation results are presented in Chapter IV which

support these statements.

Although the expression for the asymptotic power function

was derived assuming independent observations, the Central Limit

Theorem holds under the weaker condition of strong mixing [8]. ne

The expression will then still be valid; however, the detector

in question will no longer be optimum and also the value for k

will change since the dependency structure will introduce cross
02 2

terms in the computation of aiH and aiK

0A

Section 2: The Relationship Between Efficacy and the Asymptotic

Performance of Nonlinear Detectors

In Section 1 it has been shown that optimum detectors for

densities with high values for Fisher's Information will perform
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better than optimum detectors for densities with low values for

Fisher's Information. Therefore, Fisher's Information can be

used to rank the densities within a class of densities to

determine which density provides the worst environment for

detection. However, in order to prove that the pair (fo,Do)

is a saddlepoint (f minimizes Fisher's Information over the

class and Do is the locally optimum detector for fo ) , the

results of Section 1 must be generalized to account for all

* nonlinear detectors.

Consider a special case of the problem treated in Section 1

of this chapter.

H: xi = ni
8 > 0, i=l,...,N (3.25)

K: x i = n i + 8

The known signal 8 is assumed constant. The {ni} 1 are

assumed to be realizations of the independent and identically

distributed random variables {Ni} I. The noise is

distributed according to f, where f c F a class of zero mean

symmetric densities having finite Fisher's Information.

The canonical nonlinear detector for this problem can be

written

N ( > T decide K
T(x) = I g(xi)d (3.26)

i=l < T decide H

where g(') is a memoryless nonlinearity. The threshold T is

chosen to achieve the desired probability of false alarm.

Through the proper selection of the nonlinearity. this equation

6
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can represent both the optimum and locally optimum detectors for

the problem given by Eq. (3.25). Note that this detector is

both memoryless and non-time-varying. This is because the

signal is constant and the noise samples are assumed to be

independent and identically distributed.

As in Section 1, the Central Limit Theorem can be used to

calculate the asymptotic power function for the detector given

by Eq. (3.26). When the signal is absent, the mean and variance

of the single sample test statistic are

= EHg(x)3= J;g(x)f(x) dx

(3. 27)

2 2 2 _ 2 d-2
= E Cg (x)J - - (x)f(x) dx - g(x)f(x) dx

When the signal is present,

PK.= EKcg(x)] L L~g(x)f(x-e) dx (3.28)

By a change of variables in the integrand, this becomes

- Jg(x+e)f(x) dx (3.29)

* Also,

2 E[g2(x)J POK " K K

(3.30)

9. 0K E:~ (xfx d .g(x+6)f(x) dx)

S-

~f x flfl a n c a . t n a~ . ~ - . -
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Using the Gaussian approximation provided by the Central Limit

Theorem, the threshold is chosen to fix a:

a Prob [T(x) > T] 1 0T N K (3.33)

C~ H (3.32) x j;x~~) x

f2b, [(xe)f> 0(333

2aK

1 1a (3.36)

a (x= ;()f(x) dx - f(x)f(x) dx

[2(x+e)f(x) dx k f(x+ e)f(x) dx )2 33) -
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In the limit as 8 0 and N e holding ' 8 kO  a constant,

X PH 0 (f), (3.38)

where

E [i' (xf(x) d(]

g 2 (x)f(x) dx - (x)f(x) dx]

is the efficacy of the nonlinear detector (see Appendix 3.3).

The asymptotic power function can now be written as

0(= 1 - ((-(-a) - e F ) (3.40)
g

Efficacy thus has a monotone relationship with the asymptotic

performance of nonlinear detectors. High values for efficacy

correspond to higher power at a given signal strength than do

low values. Note that for g(x) - -f'(x)/f(x) (the locally

optimum detector), one finds Eg(f) I(f) (Fisher's Informa-
g

tion), and Eq. (3.40) reduces to the result from Section 1

[Eq. (3.24)].

Section 3: The Saddlepoint for the Minimax Problem

The results of Section 2 may be used to prove that the pair

(f ,D o, where f minimizes Fisher's Information over the
0 0 0
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given class of densities and D is the locally optimum

detector for density fo, is a saddlepoint for the minimax

detection problem preyiously described. Let f be contained in

F, a convex set of densities, and let g be any antisymmetric

detector nonlinearity. Also let go be the locally optimum

nonlinearity for density f0 (i.e. g(X) -fo (x)/fo( )

if f0 and g0 satisfy

Eg(fo) Ego (f) E (0M (3.41)

for all f c F and all g antisymmetric, then (fo, ) is a
0 0

saddlepoint. That is, any g other than go will decrease the

efficacy (and thus the power finction) when fo is the noise.

Also, any other noise f will increase the efficacy when g° is

used for detection. Thus fo is the "worst density" and go is

the best detector for this density. This is the minimax solution.

The detector is chosen for minimum error using the density which

maximizes error. This problem is related to the minimax estimation

problem of [9J.

The proof of Eq. (3.41) is similar to one used by Huber [10)

in his work on robust estimation. His equation for the asymptotic

variance of an M-estimate is similar to the equation for efficacy.

For g(x) antisymmetric, efficacy can be written

.

[1(xf(x) dx

jG2(x)f(x) dx (3.42)

The relationship E (fo ) 0 E (f ) follows from the fact

that the nonlinear detector which maximizes efficacy is the locally

AL
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optimum detector [li. To prove E (f) . E (f), first
go g

- note that E go(f) is a convex function of f (See Appendix 3.4). __

.0
Then let ft (l-t)fo + tf where fl E F. Now,

dE (f 0 (3.43)

t-0

if and only if E (f) is increasing in all d.rections from f0 o

Which, by the convexity of Eg (f) on the convex set of densities

og

iF, means that fo0 must minimize E go M.) By a straightforward

computation,

-d ([1-t1f-;0Ixf 0 (x) dx: + 90 o'(x)f 1 (x) dx)

f x Ego tdx j 2 2

I- fg2(1-tf (x) f()d:+f(x dx

f)-t=0 0

0S o (xxo() fdx ()d

f- 02(x)f 0(x) x 0

(3.44)

[fo' ( ox dx.

[Ic 2 fg7 2 (x) [f 1(x) f ON()]dx

(x)f Wx dx]

To simplify this expression, note that

./_:o'~~ (''oX .( o(X) o'(x)" f"x (fox)\ 1 x dx
S0 '(x)f 0 (x) dx J( ) fox) -\ fox) (x)

cc f(3.45)

- I(fI

,m0

0
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and

(x02 Wf ( xW W dx I( )(3.46)

where I(f )is Fisher's Information for density f. Thus,

0*

Now this equation is equivalent to the condition necessary for the

minimization of Fisher's Information. That is,

d d 1(-t) f 0 (x) + tf 1 '(x)1
dr t)d (1-t)f (x) + tf 1(Wx) t-0

(3.48)

-2 2jOWx fi 1(x) -fe 0 x)] dx 9i: 2(xW [fx W f 0 (x) dx

Integrating the first integral by parts leaves

SI(f) L2g IN2c~) go W (x]fix W f0 (W) dx

CI 0( . 9

qL
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So I(f) will be minimized at f a f if and only if Eq. (3.49) is

nonnegative. Thus, E (f) is minimized at f if and only if
o0

I(f) is minimized at fop which occurs if and only if

LC2go (x) - g (x)l[f1(X) - f0(x)] dx > 0 (3.50)

p.i
for all f, c F. Therefore, E go(f O ) E 9(f) when fo minimizes

Fisher's Information over the class F. Eq. (3.41) holds and the

pair (f ,Do) is a saddlepoint.

* "Section 4: Minimax Detectors - Some Examples

Sections 1, 2, and 3 have established the fact that given a

. convex set of densities F, the minimax detector for F is the

* locally optimum detector D for the density fo which minimizes
00

Fisher's Information over the class. Since I(f) E( f (f) is

"* a convex function in f (see Appendix 3.4) there exists a density

with minimum Fisher's Information. Huber [3) has shown that this

density is also unique. In this section several different classes

of densities are considered and conditions are established for the

" .minimax detectors.

First M Moments Fixed

Consider the class consisting of all densities which have the J

M "
values {m )i for the first M moments. That is, a density

f(x) in this class must satisfy
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:xmf (x) dx = m = 0,1,2,...,M (3.51)

where o= 1. The density with minimum Fisher's Information in

this class cay be found using the Euler-Lagrange equation ii
-L dia L )

-" d " o (3.52)

with 14

L(xf,fl) f 1LLx. f(X) + z X x f (X)
f WM=O

A straightforward calculation yields the following second order

nonlinear differential equation

f'(x) 2f"(x) + t m .53

f (x) f(x) m=0

The density which satisfies Eq. (3.53) and the constraints given

by Eq. (3.51) is the density with minimum Fisher's Information.

The locally optimum detector for this density is the asymptotic

minimax detector for the class.

As an example, consider the case M - 2 with i = 0 and

0 2 (i.e., all densities with fixed variance a2)

Eq. (3.53) becomes

2i f

(f'(x) (X) ,22 - 2 f"(x) X + Xx= 0 (3.54)

flxW f(x)

9'
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with the constraints

J~(x) dx=1

x2f~x : 2

f..xf(x) dx

These equations are satisfied by the Gaussian distribution. The

linear detector is the minimax detector for the class. It

guarantees the lower bound of 1/02 for the efficacy. The

following table displays the efficacy for both the linear detector

and the locally optimum detector for some noise fl"

Efficacy

Gaussian noise (C2=1) non-Gaussian noise f] (02=1)

linear 1 1
detector

locally
optimum some 1 I(f1 ) , 1
detector amount
(-fi'/fl)

Use of the linear detector guarantees an efficacy of unity. If

another detector is used, the efficacy for Gaussian noise will be

less than unity. However, when the noise f1 for which the

detector was designed is present, the efficacy will be given by

Fisher's Information (see Section 2) and could be much greater O

than unity. If one either has some prior knowledge of the noise

or is willing to accept a decreased performance for Gaussian

noise then one could do far better than the linear detector, even
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though it is the most robust (in the minimax sense) for this

class. A conclusion which can be drawn is that this class of

fixed moment densities may not be very realistic.

A Class of Mixtures

Perhaps a more useful class of densites is given by the

mixture

f(x) (1 - c)g(x) + ch(x) , 0 < £ < 1 (3.55)

where g(x) is some known symmetric density (with -log g(x)

convex) and h(x) is an unknown contaminant which is assumed

symmetric. Huber [3J has shown that the density fo(x) with

minimum Fisher's Information in this class is given by

{ (1- c)g(x) ,Ixl 4 a
fo (x) = (3.56)

(i C)g(a)e-kQx-a) Ixl a

where [-a,a] is an interval such that lg'(x)/g(x)l 4 k and

a

g(x) dx + 2g(a) (3.57)
k 1-C

a

A proof of this result is given in Appendix 3.5. When g(x) is

the Gaussian distribution, the locally optimum detector for

density f (x) is an amplifier limiter. It's performance has
0

been studied by Martin and Schwartz [121. Kassam and Thomas [132
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have studied the various limiters which arise when g(x) is a

member of the generalized Gaussian distribution defined in

Chapter III- Section 3. 0

Other Possibilities

Huber [14] has developed a technique to determine the

distribution with minimum Fisher's Information which will fit a

set of measured points. Given k > 2 points, Huber has found

that there is a unique function which has a minimum value for

Fisher's Information among all distributions which pass through

the points. This function can be obtained by spline interpola-

tion. Let F( i) = ti , i = l,...,k be the k points. Assume that
Ko = -CD to = 0 and 1= t =1. Then the distribution

F 0x) with minimum Fisher's Information which passes through

these points must satisfy the following four conditions:

(1) F ( ) = ti , i = ,1...,k+l

(2) F is two times continuously differentiable
0

(3) f (X) * F'(X) 0 except over intervals
0

where t ti

(in such cases F0 '(x) = 0)

(4) On each interval (/o)"/ o u )i = a constant

Also, the value for Fisher's Information will be

k
I(f o ) = -4 [ (ti+ 1 - ti)X i  (3.58)

i=0

A
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This result could be very useful for detection systems.

Initially measurements would be made and the density which

satisfies conditions (1) through (4) would be found. The optimum

detector for this density should perform well for the actual

noise.

Two other classes of densities in which the member with

minimum Fisher's Information has been found are: The p-point

class and Huber's c-normal class. The p-point class [43 is

defined as the set of all symmetric distributions which are

continuous at + a and which satisfy La f(x) dx = p for some

fixed a and p. Huber's c-rormal class [3,10] is the set of all

distributions which differ by at most e in Kolmogorov distance

from the standard normal cummulative distribution function:

sup iF(x) - O(x)i < e. Both of these classes may be used

for minimax detection.

~-

[_________ .



-101-
"O

Appendix 3.1

0

The Relationship between the Efficacy of the Locally Optimum
Detector and Fisher's Information

The efficacy of a detector is given by Eq. (1.15) as,

4 EK (T (x)] ]e".1
ET = lim

N-" N VarH (T(x))

N -f (xi)
For the locally optimum detector T(x) I 1 1 -

i=l f.(x.) 1
1 1d

From Eqs. (3.16) and (3.18),

N N 3N
EK IT(x) = -iK e E s. I(fi) + 83 1 1(e sirfi)i -ii=l i= l 40O -4

N N

VarH [(x)] = E ai = Z s2 I(fi)H =i-- 7i=l

Thus, Ai
N 2Ec lim Es I(f.)

N- i 1I

N 2For the special case of .1 s. = 1 and fi=f for all i,
i=l If)

E~c = I (f)

2'
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Appendix 3.2

Satisfying the Sufficient Conditions for the Central Limit Theorem

For the Central Limit Theorem 
to hold, it is sufficient that:

(i) 2  < -.

2

(2) a. > m > 0
1

(3) E{Igi(xi)-l il 3 ) < M <-

for all i, under both H and K. In the special case of f if and

si=l for all i, Condition (1) alone is sufficient.

First consider the Neyman-Pearson detector.

2 -a 2  2 2  42
0iH iK I(fi) +  K2 (e,si,fi)

For sufficiently small e, Condition (1) is satisfied by requiring

Isil< - and I(fi)< -. Condition (2) is met if jsil 2 ml > 0 and

I(fi) > m2 > 0. Utilizing a Taylor series, Condition (3) can be

simplified

Ejo f(x -s) 31 f N f. -es. 3E [log - uv l < Ej flog l + lu l-
fi (xi) f i "

. i 3 f -Ifi(xi) f N dxi + [higher order terms)

Thus, for sufficiently small e, condition (3) can be satisfied,

under both H and K, by requiring Isil < M, < - and

fi (xi x i < M2 < w.

L ~ ~ ~ ~ ~ ~ f .(xi...) ...
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For the locally optimum detector,

2 2 0iT s. I(fi)
iH

and
2 2 20iK s.2 I(fi) + e J2(e,si,fi).

2. 2.i 2 . 2!-S
For sufficiently small e, Conditions (1) and (2) can be satisfied

by requiring 0 < m1 < sil < and 0 < m2 < I(fi  < * just as in

the Neyman-Pearson case. The left hand side of Condition (3) under

both H and K can be written

i13 1~ 3__If __( __13E( i - . Isi l 2.1-- + lil
-(xi f Ni

fs.x-- f (xi) dx. + {higher order terms-=~ fi(i

Thus, Condition (3) can be satisfied if Isil < M < and

i~~xi )  fi~ dx i < M2 <

- 2 I 2 .

* A"

*°

p .;. 0
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Appendix 3.3

The Efficacy of the Nonlinear Detector

The efficacy of a detector is given by Eq. (1.15) as,

ET -ur d~ EK[T W])

NrH IT (x)]

Using the nonlinear detector of Eq. (3.26),

N
T(x) Z g(x)

EK[T (x)] NE~r~) N N (x+e)f(x) dx

[T ET(x)] -N d f(x) dxd5 K e-'.g eX~e

aNfg'(x)f(x) dx:

Also,

VarHET(x)] -NVarHC(]

N N 9fg (x)f(x) dx- (fxfx dx)

Thus, for the nonlinear detector,

f'~2()f( x f)f(x) dx]

f(x) g
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Appendix 3.4

A Proof that Efficacy is a Convex Function

of f when g is Antisyrnmetric

Efficacy, for g(x) antisymmetric, is given by Eq. (3.42) as,

g = [/''(x)f(x) dx]
E (f) -_____

dx 2

Let

U(f) f'(x)f(x) dx

and

F'V(f) (()f(x) dx

Note that U"(f) =V"(f) =0 and V(f) > 0 for all but degenerate

= r[U(ffl 2

9 V(f)

is a convex function of f because

In particular I(f) -E fI(f) is convex because the locally optimum

detector is antisymmnetr~c

SA
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Appendix 3.5

A Proof that f (x) of Eq. (3.56) Minimizes Fisher's 0
Information for tse Mixture Class Specified by Eq. (3.55)

This proof is similar to one given by Huber [10]. First f (x)

is proven to belong to the mixture class. Then it is proven that

fo(x) minimizes Fisher's Information over the class. From

Eqs. (3.56) and (3.57) 0

f (1 - E)g(x) ,Ixj < a
fo(x)

1 (i -E)g(a)ek(x
-a), Ixi > a

L(x)

where [-a,a] is an interval such that 4< k and
V..

(x) dx + = M .1
f-a

The class is defined as all densities of the form

f(x) " (1 - )g(x) + eh(x)

where g(x) and h(x) are symmetric densities, 0 t c 4 1, and -log g(x)

is convex. The density f (x) is an element of the class if
0

hf (x )  f (x) ( g(x)

0 ,Ixj a

(1 - ) ae-k(Ixl-a) (1 c )
g(a)e g(x) ,Ix! > a

Le E
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is a density. To show h (x) >. 0, note that since -log g(x) is

convex, it lies above its tangents at ±a.

-log g (x) >, -log g (a) + -- ~2(x -a) ,x >a

-log g(x) >. -log g(-a) + ( - (-a)) (x + a) ,x <-a

* Also, -g a k and -k=-i. So that, 0
g(a) (a

-log g(x) >, -log g(a) + k(IxI

Thus,

g(x) .g(a)e (I!a) ,xI > a

and

(1- ) -k(IxI-a) (1___0

£ g(a)e - 1-~ g(x) . 0 for Ixj > a

Hence h (x) ;o.0. Also,
0

( 0(x) dx =( gca)f e-kIIa dx -( fg(x) dx
Ix>a II>a

X f£

a-

=~~~ f [2( J(x) dx] c)(
-a

C £

Thus h 0(x) is a density and f 0(x) is contained in the mixture class

of interest.
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From Eq. (3.50), f (x) minimizes Fisher's Information if and

only if

J2g (x) - g )]W fl(x) - fo(X)] dx >, 0

E IS
for all fl(x) in the class. Now,

Jxl a

go (x)-
k sgn(x) ,Ixl > a

g(x) ),Ixl -a

g~9 ((x90'(x)=

0 jx > a

-log g(x) convex =* > 0 ZO go x) > 0

*Also, 2 k for lx ~a. Thus, k 9 0
2 ( W 0 and2 2g

2g x) (x) + k > 0 for lxi 4 a. For lxi > a, go'(x) = 0
2 2 2 2andg (x) ak thus 2g'(x) -(W+k 0. Then, adding

and subtracting k2 from inside the integrand

' f2 a--2

[2g '(x) - x) + k 2 ] [fl(x) - f 0 (x)]dx - k(x) - fo(x)ldx
a

For ixi < a, fl(x) - f (x) - chl(x) >, 0. Also, the second
integral equals zero. Thus J >, 0 and f (x) minimizes Fisher's

0

4 Information over the entire class.

i q -L
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Chapter IV
0_L

AN ADAPTIVE DETECTOR FOR SIGNALS IN NON-GAUSSIAN NOISEJ

Adaptive detectors are often used when near optimum

performance is required for a wide variety of noise

environments. They are often more complex than non-adaptive

detectors; however, they are inherently capable of handling
noise whose statistics are unknaown or time-varying. In this

chapter an adaptive detector is presented and simulation

results are given which indicate that this detector will

perform well for several different background noises. Section 1

starts with a description of the detector. Different measures

of density function tail behavior are then explored to determine

an algorithm which may be used to adapt the detector. In orderoi

to test the detector's performance, it is implemented on a

digital computer. Section 2 presents the results of this

simulation.

Section 1: Development of an Adaptive Detector using the

Ito Johnson System as a Noise Model

Figure 4.1 displays the basic structure for an adaptive

detector which can be used for the hypothesis testing problem

L ~I-
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decide K
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Fig. 4.1 - An Adaptive Detector for Signals in
Non-Gaussian Noise



.v • t - _ • r _ .- v -_ . -~~7~ 7 -:.-- -- - C -= .. . . . . .-," . . . - ,

-113-

described in Chapter I. Information is extracted from the

observations in order to select a nonlinearity to be used for

the detection. If one has a reasonable model for the noise,
L with perhaps a few unknown parameters, the selection of the

nonlinearity becomes less difficult. The parameters may be

estimated from the observations to determine the density

function within the model which most closely approximates the

noise. The optimum nonlinearity for this density should be

close to optimum for the actual noise. 0

The Johnson Su System, presented in Chapter II - Section 3,

provides a useful noise model. It was chosen because it is a

relatively simple parameterized family of densities which

possesses noise blankers for the optimum detector nonlinearities

(se Fig. 2.15 and Appendix 2.2). These nonlinearities are

nearly linear about the origin. However, large observations are

heavily suppressed. The Johnson System for zero mean symmetric

distributions [Eq. (2.35)] can be described by two parameters,

6 and X. The shape parameter 6 is directly related to the

tails of the density. The scale parameter X can be related to

the variance 02 by the following equation

_1/2
2/ 2a 2  1e2 /  I (4.1).

In order to use the Johnson System nonlinearities, an adaptive

detector must estimate the parameters 6 and A. Given
estimates of 6 and 02, X can easily be estimated using Eq. (4.1).

* -
.*..
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The shape parameter 6 can be estimated by utilizing its

relationship to tail behavior. Three measures of density
function tail behavior will now be described in order to 0

facilitate the selection of the appropriate measure for the

estimation of 6.

Measures of Density Function Tail Behavior

It is desirable that a measure of tail behavior be

independent of location, be independent of scale, and exist for

all distributions. The most common measure of tail behavior,

the standardized fourth central moment defined by

E(x - 4

B2 = wher2 . = E(x) (4.2)
[E(x -

possesses the first two of these properties. However, any

simple function of moments cannot exist for all distributions.

This leads to the use of functions of percentage points as a

measure of tail behavior. One such measure El) is

R(pl)
(4.3)

R(p2)

where R(p) = F- I(p), 0 < p 1 1, and F(.) is the

cumulative distribution function. The percentage points p1

and P2 are chosen on the tail and on the shoulder of the

density, respectively. That is, the point p1 is selected so

that the p1 quantile, x, = R(p,), increases monotonically
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as the tail becomes heavier. The point P2 is chosen so that

the P2 quantile, x2 - R(p2 ), remains relatively stationary

regardless of tail behavior. The measure T exists for all

reasonable distributions and is independent of both location and

scale.

Another useful measure of tail behavior [I] is

R' (Pl)
P = (4.4)

R(pl)

where p1 is chosen on the tail of the density. This p

possesses many of the same properties as does T. Its major

advantage over T is that the point on the shoulder of the

density, which may be difficult to choose, is not necessary.

The points p1 and P2 are chosen on the tail and on the

shoulder of the Johnson density system. The inverse of the

cumulative distribution function for the Johnson System is

X - F'I(P) -Asinh -- (4.5)

where 0-i(l) is the inverse of the unit Gaussian cumulative

distribution function. Figure 4.2 displays x versus p for

several values of the parameter 6 (X is selected by Eq. (4.1)

so that C2 remains constant • For values of p > .995, as 6 0

decreases so that the tail becomes heavier, the quantile x

increases. The larger p is, the easier it becomes to

differentiate between the different values of 6. For this .0



6=

6=3

00.97

0.0

0
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reason and to account for detectors operating at a low false

choose P2 on the shoulder of the system, note that for values

relatively insensitive to the parameter 6. In this study of

tail behavior the point P2 - .98 was selected.

The standardized fourth central moment B2 and the tail

measures i and p for the Johnson System, normalized by their

values for the Gaussian distribution, are displayed in Fig. 4.3.

All three measures increase monotonically as the tails become

* heavier (6 decreases). Any one of them could be used to

estimate a value for 6 given a set of observations. Fig. 4.4

shows the relationships between ir and 02 and between p

and 2.Assuming the Johnson System model held, one couldI

measure whichever parameter was easiest and then calculate the

remaining.

Due to the importance of Fisher's Information in estimation

and detection problems (see Chapter III), the relationships

between Fisher's Information and the various tail measures were

* explored. Fig. 4.5 displays a2 (f versus 021 T and p

* (normalized). Given a value for either 82, 'r, or p and

assuming that the Johnson System noise model is a good

approximation to the actual noise environment, one could obtain

a unique value for Fisher's Information from Fig. 4.5. This

4 procedure would probably be easier than estimating Fisher's

Information directly for an unknown noise distribution.

The usefulness of these three tail measures for a different

* noise model, the generalized Gaussian noise model presented in
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Chapter II - Section 3, was also considered. Fig. 4.6 shows

82, -r and p versus the density system parameter c. As

for the Johnson System, the three measures increase monoton-

ically as the tail becomes heavier (c decreases). Through these

simple relationships a value for c could easily be estimated by

measuring either 82, T or p. Fig. 4.7 displays the

monotone relationships which enable one to estimate 82, T

and p from each other. A plot of Fisher's Information versus

82f t and p is given in Fig. 4.8.

An additional use for these tail measures, which was only

briefly explored, would be as tools for the comparison of noise

models. Various densities, whose tail behavior are identical as

measured by either 825 T or p, could be compared in

terms of, for example, Fisher's Information or efficacy with

various detectors.

Implementation of the Johnson System Adaptive Detector

Any one of the three measures of density function tail

behavior could be used to estimate the Johnson System shape

parameter 6. The measure T was selected because it appeared

to be the easiest to estimate from data. One need only measure

two quantiles and take the ratio. The measure 82 would

require taking a fourth moment. This would probably be more

difficult in most applications. Although p requires only one

quantile, the rate of increase in the quantile would also have

to be calculated. This could be achieved by measuring a few

points above and below the quantile. This method, however, may

not be very accurate.

I"
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The point p1  .9999999, selected previously for the

study of the tail measures, can no longer be used. This

quantile is too far out on the tail to be estimated accurately

with reasonable sample sizes. Checking Fig. 4.2 one finds that

the smallest value of p which will still allow one to differen-

tiate accurately between the various values of 6 is .995. "

Consequently, p1 = .995 was chosen. The point p2 was

changed from .98 to .975 so that the two points, pl and P2 1

would remain an adequate distance apart. Choosing p1 = .995 0

and p2 = .975, one can write T for the Johnson System as

sinh(2. 5;6/6) (.
= (4.6)

sinh( . 960/6)

This equation is plotted in Fig. 4.9. The curve is similar to

the one in Fig. 4.3.

To estimate 6 given a set of observations, T is first

estimated from the two quantiles

S]
the 99.5% point

(4.7)
the 97.5% point

and then 6 is estimated using Eq. (4.6). To estimate the

scale parameter ), the sample variance is first formed

NI

o2 1 N2
- (4.8)

AN
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where iis the sample mean. Then, using 32 and the estimate

for 6, an estimate for X may be found from Eq. (4.1). Using

these estimates for 6 and X the Johnson System density which

most closely approximates the noise can be found. The optimum

detector for this density should be close to optimum for the.1

Fig. 4.10 displays the block diagram for an implementation

of a Johnson System adaptive detector. The detector is of the

same form as that shown in Fig. 4.1. Twenty samples were used

to make each decision. After every 10,000 samples, T and the

noise variance are estimated and new estimates of 6 and XI
* are formed. The appropriate nonlinearity from the Johnson

System is then selected for use on the next 10,000 samples.

Simulation studies have been performed with a variety of noise

densities on the input. The results from these studies are 4

presented in the next section.

A key problem with the adaptive detector of Fig. 4.10 is

that as the input changes and the detector adapts, the

probability of false alarm will change unless the threshold is

adjusted properly. To eliminate this difficulty, a noisy

reference channel was added (Fig. 4.11). The reference channel

is a stream of samples with the same distribution function as

the noise on the actual channel. However, the two channels are

0 statistically independent. A detector, identical to the one on

the actual channel, is placed on the reference channel. From

its output, an estimate for the probability of false alarm (a)

can be found. The threshold can then be adjusted, in both

channels, to attempt to achieve & 0.1. Also, an estimate
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of the probability of detection (8) can be obtained by

counting the number of correct decisions made when the signal is

present. 

Section 2: Simulation Results "

The linear detector, various nonlinear optimum detectors,

and the adaptive detector which was described in Section 1 have 0

all been simulated on a digital computer. Various noise

backgrounds were considered. All detectors utilized a noisy

reference channel to aid in the adjustment of the threshold.

The detectors attempted to maintain a probability of false alarm

(a) equal to 0.1. The following graphs display estimates of

the probability of false alarm (a), the probability of

detection (B), and the total probability of error (P ) for

the various detectors and noise situations. The threshold

levels (T) are also reported. Thirty estimates of these values

are displayed. Each estimate represents 500 decisions made by

the detector, 20 samples per decision. The first few estimates

were taken before the threshold had stabilized. For this

reason, when averaging these numbers the first ten estimates

should be ignored.

Figs. 4.12 through 4.15 display a, PE and T for JR.

both the optimum and adaptive detectors operating in Gaussian

noise. In this case the optimum detector is just the linear

detector. Due to the statistical fluctuations of the input, it

!9

S]
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is hard to determine precisely the performance of these

detectors. However, it appears that their performances are
0

nearly the same.

Figs. 4.16 through 4.19 display a, , PE' and T for

the optimum, linear, and adaptive detectors in Laplace or double

exponential noise. The Laplace distribution has heavier tails

than the Gaussian. The optimum detector is the amplifier

limiter. The adaptive detector performs nearly as well as the

optimum detector (see Fig. 4.17 or 4.18). The linear detector

is about 10% worse.

When Johnson noise is on the input of the adaptive

detector, one would expect it to perform especially well. When 4

it properly estimates the parameters 6 and X, it will be

using the actual optimum detector. Figs. 4.20 through 4.23 show

that this did occur. The adaptive detector's performance is

nearly identical to that of the optimum detector. Again note

that the linear detector is a rather poor detector for this

heavy tailed density.

A Gaussian-Gaussian mixture (presented in Chapter II -

Section 3) was used to achieve a density with still heavier

tails. One Gaussian distribution, the contaminant, was given a

variance one hundred times larger than that of the background

Gaussian distribution. The contaminant occurred with

probability 0.1. The resulting density was normalized to have

variance unity. Figs. 4.24 through 4.26 show the performances

of the optimum, linear and adaptive detectors for this heavy

tailed density. Fig.. 4.27 displays the thresholds. One can 0

easily see that the linear detector does not perform very well.
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SIMULATION RESULTS

STEADY STATE STEADY STATE STEADY STATE MEAt,NIE DETECTO.R MEAN c ~ MEAN B TOTAL PROS, ERROF

KGAUSSIAN OPTIMAL .097 .828 .269
ADAPTIVE .101 .832 .269

LAPLACE OPTIMAL .105 .945 .160
ADAPTIVE .108 .925 .183
LINEAR .098 .841. .257

JOHNSON OPTIMAL .095 .983 .112(6-1)
ADAPTIVE .098 .982 .116
LINEAR .101 .862 .239

*GAUSSIAN- OPTIMAL .102 >.999 .0
G SSIAN .0
y10 ADAPTIVE .127 >.999 .127

LINEAR .108 .866 .242

GAUSSIAN- OPTIMAL .102 .922 .180
GAUSSIAN

M!URE ADAPTIVE .099 .833 .266
Y 100

222. LINEAR .108 .347 .6

*Fig. 4.32 -Simulation Results: a, 6,P
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However, both the optimum detector and the adaptive detector

perform so well it is hard to differentiate between them. For

this reason, this case was repeated with a decreased signal

strength.

Using 0.2 for the signal rather than 0.5, the performances

for these detectors are more readily apparent. Figs. 4.28

through 4.31 display a, a, PE and T. Note that the scale

on the vertical axis for both Figs. 4.29 and 4.30 have been

changed. The linear detector's performance is now totally

unacceptable. However, the adaptive detector's performance is

close to that of the optimum detector, ever~ with this relatively

small signal.

Fig. 4.32 displays the average value of a, 8 and the

total probability of error. In computing this average the first

ten estimates were ignored to allow the threshold to stabilize.

Due to the fact that the estimated value for a did deviate

from 0.1, the estimates of S should not be compared blindly.

The column for total probability of error removes this

variability and is probably the best column for comparison

purposes. In all cases the adaptive detector is found to be

S nearly optimum. For the heavier tailed densities it is also

found to perform far better than the linear detector.

we A Verification of Some Results from Chapter III

The results of Chapter III - Section 1 can be used to find

asymptotic values (small signal, large numbers of observations)

for the total probability of error for optimum detectors. The
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table in Fig. 4.33 displays the five cases which were

simulated. Adding the value of 0.1 for a to 1 - 8 from Eq. (3.13)

yields the asymptotic probability of error for the optimum

detector. The final column lists the probability of error

observed from simulations. These numbers are in close

agreement. This verifies both Eq. (3.13) and the accuracy of

the simulation results. Note that the total probability of

error for densities with high values for Fisher's Information is

significantly less than for densities with low values for

Fisher's Information. This supports the conclusion from Chapter

III that Fisher's Information can serve as a measure of the

difficulty of detecting an additive signal in noise. Figs. 4.34

through 4.42 also serve to illustrate this point.

Fig. 4.34 displays the probability of detection (8) for

optimum detectors in Gaussian, Laplace, Johnson (c = 1), and

Gaussian-Gaussian mixture noise. Fig. 4.35 displays 8 for the

adaptive detector and Fig. 4.36 displays 0 for the linear

detector. For both adaptive and optimum detectors, densities

with high values for Fisher's Information yield higher power

than densities with low values for Fisher's Information. The

linear detector behaves about the same for all cases. One can

think of the linear detector as being uniformly poor for all

non-Gaussian densities.

Figs. 4.37, 4.38 and 4.39 display both a and 8 for the

optimum, adaptive and linear detectors. These curves are

included to show all of the data plotted to the same scale.

Figs. 4.40, 4.41 and 4.42 display the probability of error for ..

optimum, adaptive, and linear detectors. The same observations
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* *

Fisher's Calculated Asymptotic Observed
Noise Information Probability of Error Probability of Erro

Gaussian 1 .270 .269

Laplace 2 .130 .160

Johnson 2.386 .115 .112
(6=1) ,

Gaussian- 9.02 .100 .102
Gaussian
Mixture

Gaussian- 9.02 .180 .180
Gaussian
Mixture AD,
(signal=O.2)

• Values reported to 3 significant digits only

Fig. 4.33 - Comparison of Computed and Observed
Probability of Error for Optimum Detectors

L



-156-

C 0

I0.0

0.7
0 0i 2 53

succssie esimaes (ime

successsivoieetmts(ie

Fig.4.3 Proabiity f Dtecion: Optmum etetor



-157-

0

/ A

D

0.8

0.7 t

0 5 10 15 20 25 30

successive estimates (time)

A Gauss ian-Gauss ian Mixture

B ------------ Johnson Noise, 6

C -*---.---...-Laplace Noise

D Gaussian Noise

Fig. 4.35 -Probability of Detection: Adaptive Detector
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4 6

0

0.9 .. B

0.7

0 5 10 is 20 25 30

successive estimates (time)

A ---- ---- Gaussian-Gaussian Mixture

B ---- ~-- Johnson Noise, 6 1

C -*--.--...-Laplace Noise

D Gaussian Noise

Fig. 4.36 -Probability of Detection: Linear Detector
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0

I 0.8

0.6

1 0.4

0.2
B -

0 5 10 15 20 25 30

successive estimates (time)

A--------------Gauss ian-Gauss ian Mixture

~ Johnson Noise, 6 1

S-------Laplace Noise

D Gaussian Noise

'Pi

Fig. 4.37 a and 6: Optimum Detectors
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AA

A

CL 0.2 \ - .-

0 5 10 15 20 25 30

successive estimates (time)

A Gaussian-Gaussian Mixture

B ------ Johnson Noise, 6 1

C -- .-- ***-Laplace Noise

D Gaussian Noise

*Fig. 4.38 a and 6: Adaptive Detector
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6 0.8

0.

a S 10 is 20 25 30

successive estimates (time)

Gaussian-Gaussian Mixture

Johnson Noise, 6 1

Laplace Noise

Gaussian Noise

VFig. 4.39 a and 6: Linear Detector
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0.5

PED

0.4

0.3

0.2

0 .1 . ....

B %,j . . ,.""-- *"-- .. ,, " ". ....-

0
0_5 10 15 20 25 3.

successive estimates (time)

A Gaussian-Gaussian Mixture

B Johnson Noise, 6 = 1

C Laplace Noise

D Gaussian Noise

Fo

Fig. 4.40 - Total Probability of Error: Optimum Detectors
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0.5 
*0

P

D
0.3

\D-

.5.1 B 

.I V

0 5 10 15 20 25 30

successive estimates (time)

A.-.-----~~.. Gaussian-Gaussian Mixture 4

B'-----------Johnson Noise, 6 =1

c------*---...--Laplace Noise

D Gaussian Noise

* Fig. 4.41 -Total Probability of Error: Adaptive Detector
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.0.1

0.5

U , ;. s< , - .. " -.. " -* ....

0.2 -\ /

0.

0 5 10 15 20 25 30

successive estimates (time)

A Gaussian-Gaussian Mixture _

B Johnson Noise, 6 = 1

C . ............. Laplace Noise

D Gaussian Noise

.6 Fig. 4.42 - Total Probability of Error: Linear Detector
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which were made for the power curves can be made here. Highly

non-Gaussian noise, with high values for Fisher's Information,

can be an asset since the increased structure of the noise can

be utilized to increase detector performance over that possible

with just Gaussian noise. Nonlinear processing, however, is

required to achieve this improvement. The linear detector's

performance remained relatively the same for all densities

studied.

The Performance of the Sign Detector

The sign detector was also considered in this simulation

study. The sign detector or hard limiter may be expressed as

N
T(x) = [ sgn(xi) (4.9)

i=l

where,

+1 ,x>O

sgn(x) 0 ,x-O

-I ,x<0

Figs. 4.43 through 4.46 display a, B, PE and the threshold

for the sign detector in both Gaussian and Laplace noise. As

before, N = 20 samples were used. In both cases, although the

threshold had stabilized near 6, the curves for a and B

cycled between two levels. To understand this, a and B were

calculated numerically.
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.0.

0.4

0.5

0.2

0.3

0.

0 5 10 15 20 25 30

successive estimates (time) ..

Laplace Noise

Gaussian Noise

Fig. 4.43 -Probability of False Alarm: Sign Detector .- 0
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0

0.8

0.7 I ,

0.6

0 5 10 i5 20 25 30

successive estimates (time)

Laplace Noise

- Gaussian Noise

*-

* Fig. 4.44 -Probabili-ty of Detection: Sign Detector
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0.0

V0.4

-.- E

0.2

0 510 i5 20 25 30

successive estimates (time)

Laplace Noise

Gaussian Noise

* Fig. 4.45 -Total Probability of Error: Sign Detector
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0

T

I 5 0

4-

2-

0 f -
0 5 10 1520 25 30

successive estimates (time)

Laplace No~ise

........................Gaussian Noise

* Fig. 4.46 -Threshold Levels: Sign Detector



-170-

Under H, when the noise has a symmetric distribution,

sgn(x i) will be -1 with probability 1/2 and +1 with

probability 1/2. Considering the sum of observations as 0

binomial trials, the probability distribution for T(x) can be

calculated. It consists of impulses at all even numbers from

-20 to 20 as shown in Fig. 4.47. Summing these impulses it can

be seen that

a = ProbH[T(x) > T3 = 0.132 for 4 < T < 6 0
(4.10)

= 0.058 for 6 < T < 8

The oscillations in a are due to the following reasons. Whenever

4 < T < 6, the detector finds & z 0.132. The threshold is

then raised slightly in an attempt to lower & to 0.1. As soon as

T reaches 6 (6 < T < 8), & falls to approximately 0.058.

Since a = 0.1 is impossible to achieve, the system continues to

oscillate with T very close to 6. A corresponding oscillation in

occurs.

As a che,.k, S for Gaussian noise can be calculated easily.

For a signal of 1/2, sgn(x i ) equals -1 with probability 0.3085

and +1 with probability 0.6915. The distribution of T(x) is given

by Fig. 4.48. For 4 < T < 6, a = .746. When 6 4 T < 8,

8 = .575. These numbers are in close agreement with those

actually observed (Fig. 4.44).

These oscillations are a serious drawback for the sign

detector. Probably the best way to eliminate this problem is to

utilize a randomized test. Such tests have not been considered

here since the sign detector is the only detector mentioned above 0

which yields outputs which are discrete random variables.
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t ProbH[T(x) =t]

20 9. 54 x1C-

18 1. 91 x 1-

16 1.81 x 1-

14 1.09 x 1-

12 4.62 x 1-

10 1.48 x 10-2

8 3.70 x 10-2

6 7.39 x 10-2

4 1.20 x 10-1

2 1.60 x 10-1

0 1.76 x 10-1

For -2 to -20, Prob[T(x) =-t] Prob[T(x) =t]

Fig. 4.47 -Probability Distribution of the Output of the
Sign Detector: Symmetric Noise Density, .0No Signal
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t ProbK[T(x) = t]

20 6.249 x 10-4

18 5.576 x 10 - 3

16 2.363 x 10-2

14 6.326 x 10- 2

12 1.199 x 10-1

10 1.712 x 10-1

8 1.910 x 10-1

6 1.704 x 10-1

4 1.235 x 10 - 1

2 7.349 x 10-2

1) 3.606 x 10 - 2

-2 1.463 x 10- 2

-4 4.894 x 10- 3

-6 1.344 x 10 - 3

-8 2.997 x 10 - 4  
@1

-10 5.349 x 10 5

-12 7.457 x 10-6

9 -14 7.827 x 10- 7

-16 5.820 x 10-8

-16 2.733 x 10 - 9

-20 6.097 x 10-11

Fig. 4.48 - Probability Distribution of the Output of the
0 Sign Detector: Gaussian Noise, Signal = 1/2

li
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Chapter V

CONCLUSION

In this dissertation, methods for the detection of known,

discrete-time signals in impulsive noise have been investi-

gated. After a brief introduction to the detection problem in

Chapter I, Chapter II concentrated on impulsive noise. The

characteristics and sources oZ impulsive noise were considered

briefly. Several impulsive noise models were explained. Three

systems of density functions were then presented to provide

first order non-Gaussian noise models which are simple enough

to use in detection problems. These three systems are: a

generalized Gaussian noise, the Johnson Su System, and a

mixture model. Further research is needed in developing

impulsive noise models which are tractable in detection

problems. Middleton's model [I] is probably the most complete

and comprehensive to date. However, it is quite complex and is

unable to model the dependency which has been observed for

impulsive noise samples. Research concentrating on modeling

this dependency structure and on developing higher order

densities for non-Gaussian noise is needed.

In Chapter III, the importance of Fisher's Information in

assessing the asymptotic performance of detectors has been

stressed. It has been shown that an impulsive noise with a



-175-

high value for Fisher's Information provides a better

environment for detection than does a Gaussian noise of equal

0
power. The increased structure of impulsive noise may be

exploited to increase detector performance over that possible

for Gaussian noise. Nonlinear processing, however, is required

to achieve this improvement. To further illuminate the

relationship between Fisher's Information and detection, it may

be beneficial to explore the connection between Fisher's

Information and entropy. To illustrate this connection,

observe that among all densities of a given variance, the

Gaussian distribution both minimizes Fisher's Information and

maximizes entropy. Further research centered on exploring this

connection and on the effect of these measures on the analysis

of detector performance would be desirable.

The relationship between Fisher's Information and

asymptotic detector performance was utilized in Chapter III for

the design of minimax detectors. The density with minimum

Fisher's Information over a given class of densities is the

worst case density within the class for detection. The optimum

L detector for this density is the minimax detector for the

class. Several density classes were defined and conditions for .VO

the minimax detectors were explored. One especially

interesting class is the class of all distributions whose

cumulative distribution functions pass through k given points.

Huber's conditions [2] which define the density that minimizes

Fisher's Information over this class were presented. This

technique appears especially promising for detection purposes.

A possible implementation would require taking data points and
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finding the density with minimum Fisher's Information which

passes through the points. Then, the optimum detector for this

density can be used. This detection procedure should be quite

robust.

Minimax techniques can be useful if the class of densities

is properly defined. However, in many cases it may be more

appropriate to find a detector which works well for many

non-Gaussian densities rather than to find the one that works

best for the worst case density. To approach this problem one

could examine the equation for efficacy [Eq. (3.39)) for

various detectors and density systems, the objective being to

find a nonlinearity which yields high values for efficacy for

many different densities. This nonlinearity should then be

tested by simulation to determine how well the performance

predictions based on efficacy carry over to the small sample

case.

In Chapter IV an adaptive detector based on the Johnson

System was presented. Simulation results were displayed which

showed that this detector performs well for several different

densities. However, to truly test this system, actual

impulsive noise data should be used. A variation of this .0

detector could also be considered. The tail measure p,

rather than T, could be used to estimate the parameter 6.

Use of p would require taking only one quantile. Since this 0

point is on the tail of the density, fewer samples would have

to be saved to find an estimate for the quantile. That is,

when looking for the .995 quantile only the top 50 out of **

.b
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10,000 points need be saved; while looking for the .975

quantile (required for estimating r) requires saving 250

points. Fast methods to estimate both the quantiles and the
-1

rate of change of the quantiles [dR(p)/dp where R(p) = F (p)]

are needed.

As briefly mentioned in Chapter IV, the tail measures '0

a2, -r, and p can be used as tools for the comparison of

density systems. Different densities, whose tail behavior are

identical as measured by either 82, t or p, could be compared S I

in terms of Fisher's Information or the performance of various

detectors. This study could aid in the selection of appropriate

density systems for noise modeling.

0.
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